JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MILGROM’S LAW AND Λ’S SHADOW: HOW MASSIVE GRAVITY CONNECTS GALACTIC AND COSMIC DYNAMICS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MILGROM’S LAW AND Λ’S SHADOW: HOW MASSIVE GRAVITY CONNECTS GALACTIC AND COSMIC DYNAMICS
Trippe, Sascha;
  PDF(new window)
 Abstract
Massive gravity provides a natural solution for the dark energy problem of cosmology and is also a candidate for resolving the dark matter problem. I demonstrate that, assuming reasonable scaling relations, massive gravity can provide for Milgrom’s law of gravity (or “modified Newtonian dynamics”) which is known to remove the need for particle dark matter from galactic dynamics. Milgrom’s law comes with a characteristic acceleration, Milgrom’s constant, which is observationally constrained to a0 ≈ 1.1 × 10−10 ms−2 . In the derivation presented here, this constant arises naturally from the cosmologically required mass of gravitons like , with Λ, H0, and ΩΛ being the cosmological constant, the Hubble constant, and the third cosmological parameter, respectively. My derivation suggests that massive gravity could be the mechanism behind both, dark matter and dark energy.
 Keywords
gravitation;cosmology;dark matter;dark energy;
 Language
English
 Cited by
 References
1.
Ade, P. A. R., et al. 2014, Planck 2013 Results. XVI. Cosmological Parameters, A&A, 571, A16

2.
Avilez-Lopez, A., Padilla, A., Saffin, P. M., & Skordis, C. 2015, The Parameterized Post-Newtonian-Vainshteinian Formalism, arXiv:1501.01985

3.
Bahcall, N. A., Ostriker, J. P., Perlmutter, S., & Steinhardt, P. J. 1999, The Cosmic Triangle: Revealing the State of the Universe, Science, 284, 1481 crossref(new window)

4.
Babichev, E., & Deffay, C. 2013, An Introduction to the Vainshtein Mechanism, Class. Quantum Grav., 30, 184001 crossref(new window)

5.
Baker, T., Psaltis, D., & Skordis, C. 2015, Linking Tests of Gravity on All Scales: From the Strong-Field Regime to Cosmology, ApJ, 802, 63 crossref(new window)

6.
Cardone, V. F., Angus, G., Diaferio, A., et al. 2011, The Modified Newtonian Dynamics Fundamental Plane, MNRAS, 412, 2617 crossref(new window)

7.
Cardone, V. F., Radicella, N., & Parisi, L. 2012, Constraining Massive Gravity with Recent Cosmological Data, Phys. Rev. D, 85, 124005 crossref(new window)

8.
Chae, K.-H., & Gong, I.-T. 2015, Testing Modified Newtonian Dynamics through Statistics of Velocity Dispersion Profiles in the Inner Regions of Elliptical Galaxies, arXiv:1505.02936

9.
Clifton, T., Ferreira, P. G., Padilla, A., & Skordis, C. 2012, Modified Gravity and Cosmology, Phys. Rep., 513, 1 crossref(new window)

10.
De Felice, A., G¨umr¨ukc¨uoglu, A. E., Lin, C., & Mukohyama, S. 2013, On the Cosmology of Massive Gravity, Class. Quantum Grav., 30, 184004 crossref(new window)

11.
de Rham, C. 2014, Massive Gravity, Living Rev. Relativ., 17, 7

12.
Famaey, B., & McGaugh, S. S. 2012, Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions, Living Rev. Relativ., 15, 10

13.
Fierz, M., & Pauli, W. 1939, On Relativistic Wave Equations for Arbitrary Spin in an Electromagnetic Field, Proc. R. Soc. London A, 173, 211 crossref(new window)

14.
Gentile, G., Famaey, B., & de Blok, W. J. G. 2011, THINGS about MOND, A&A, 527, A76

15.
Griffiths, D. 2008, Introduction to Elementary Particles, 2nd edn. (Weinheim: Wiley-VCH)

16.
Hinterbichler, K. 2012, Theoretical Aspects of Massive Gravity, Rev. Mod. Phys., 84, 671 crossref(new window)

17.
Kroupa, P. 2012, The Dark Matter Crisis: Falsification of the Current Standard Model of Cosmology, PASA, 29, 395 crossref(new window)

18.
Kroupa, P. 2015, Galaxies as Simple Dynamical Systems: Observational Data Disfavor Dark Matter and Stochastic Star Formation, Can. J. Phys., 93, 169 crossref(new window)

19.
Lee, J., Kim, S., & Rey, S.-C. 2015, A New Dynamical Mass Estimate for the Virgo Cluster Using the Radial Velocity Profile of the Filament Galaxies, arXiv:1501.07064

20.
McGaugh, S. S. 2004, The Mass Discrepancy–Acceleration Relation: Disk Mass and the Dark Matter Distribution, ApJ, 609, 652 crossref(new window)

21.
McGaugh, S. S. 2005, The Baryonic Tully–Fisher Relation of Galaxies with Extended Rotation Curves and the Stellar Mass of Rotating Galaxies, ApJ, 632, 859 crossref(new window)

22.
McGaugh, S. S. 2005, Balance of Dark and Luminous Mass in Rotating Galaxies, Phys. Rev. Lett., 95, 171302 crossref(new window)

23.
McGaugh, S. S. 2011, Novel Test of Modified Newtonian Dynamics with Gas Rich Galaxies, Phys. Rev. Lett., 106, 121303 crossref(new window)

24.
Milgrom, M. 1983, A Modification of the Newtonian Dynamics as a Possible Alternative to the Hidden Mass Hypothesis, ApJ, 270, 365 crossref(new window)

25.
Milgrom, M. 1983, A Modification of the Newtonian Dynamics: Implications for Galaxies, ApJ, 270, 371 crossref(new window)

26.
Milgrom, M. 1983, A Modification of the Newtonian Dynamics: Implications for Galaxy Systems, ApJ, 270, 384 crossref(new window)

27.
Milgrom, M. 1984, Isothermal Spheres in the Modified Dynamics, ApJ, 287, 571 crossref(new window)

28.
Milgrom, M. 1994, Modified Dynamics Predictions Agree with Observations of the HI Kinematics in Faint Dwarf Galaxies Contrary to the Conclusions of Lo, Sargent, and Young, ApJ, 429, 540 crossref(new window)

29.
Milgrom, M. 2015, MOND Theory, Can. J. Phys. 93, 107 crossref(new window)

30.
Milgrom, M., & Sanders, R. H. 2008, Rings and Shells of “Dark Matter” as MOND Artifacts, ApJ, 678, 131 crossref(new window)

31.
Rhee, M.-H. 2004, On the Physical Basis of the Tully-Fisher Relation, JKAS, 37, 15

32.
Rhee, M.-H. 2004, Mass-to-Light Ratio and the Tully- Fisher Relation, JKAS, 37, 91

33.
Sanders, R. H. 1994, A Faber–Jackson Relation for Clusters of Galaxies: Implications for Modified Dynamics, A&A, 284, L31

34.
Sanders, R. H. 2010, The Universal Faber–Jackson Relation, MNRAS, 407, 1128 crossref(new window)

35.
Tasinato, G., Koyama, K., & Niz, G. 2013, Exact Solutions in Massive Gravity, Class. Quantum Grav., 30, 184002 crossref(new window)

36.
Trippe, S. 2013, A Simplified Treatment of Gravitational Interaction on Galactic Scales, JKAS, 46, 41

37.
Trippe, S. 2013, A Derivation of Modified Newtonian Dynamics, JKAS, 46, 93

38.
Trippe, S. 2013, Can Massive Gravity Explain the Mass Discrepancy–Acceleration Relation of Disk Galaxies?, JKAS, 46, 133

39.
Trippe, S. 2014, The ‘Missing Mass Problem’ in Astronomy and the Need for a Modified Law of Gravity, Z. Naturforsch. A, 69, 173

40.
Trippe, S. 2015, The “Graviton Picture”: a Bohr Model for Gravitation on Galactic Scales?, Can. J. Phys., 93, 213 crossref(new window)

41.
Vainshtein, A. I. 1972, To the Problem of Non-Vanishing Gravitation Mass, Phys. Lett. B, 39, 393

42.
van Putten, M. H. P. M. 2014, Galaxy Rotation Curves in de Sitter Space, arXiv:1411.2665

43.
van Putten, M. H. P. M. 2015, Accelerated Expansion from Cosmological Holography, MNRAS, 450, L48 crossref(new window)

44.
Volkov, M. S. 2012, Cosmological Solutions with Massive Gravitons in the Bigravity Theory, J. High Energy Phys., 2012, 35

45.
Walker, M. G., & Loeb, A. 2014, Is the Universe Simpler than ΛCDM?, Contemp. Phys., 55, 198 crossref(new window)

46.
Wu, X., & Kroupa, P. 2015, Galactic Rotation Curves, the Baryon-to-Dark-Halo-Mass Relation and Space-Time Scale Invariance, MNRAS, 446, 330

47.
Xu, D., Sluse, D., Gao, L., et al. 2015, How Well Can Dark-Matter Substructures Account for the Observed Radio Flux-Ratio Anomalies?, MNRAS, 447, 3189 crossref(new window)