JOURNAL BROWSE
Search
Advanced SearchSearch Tips
AGN BROAD LINE REGIONS SCALE WITH BOLOMETRIC LUMINOSITY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
AGN BROAD LINE REGIONS SCALE WITH BOLOMETRIC LUMINOSITY
TRIPPE, SASCHA;
  PDF(new window)
 Abstract
The masses of supermassive black holes in active galactic nuclei (AGN) can be derived spectroscopically via virial mass estimators based on selected broad optical/ultraviolet emission lines. These estimates commonly use the line width as a proxy for the gas speed and the monochromatic continuum luminosity, λLλ, as a proxy for the radius of the broad line region. However, if the size of the broad line region scales with the bolometric AGN luminosity rather than λLλ, mass estimates based on different emission lines will show a systematic discrepancy which is a function of the color of the AGN continuum. This has actually been observed in mass estimates based on Hα/Hβ and CIV lines, indicating that AGN broad line regions indeed scale with bolometric luminosity. Given that this effect seems to have been overlooked as yet, currently used single-epoch mass estimates are likely to be biased.
 Keywords
galaxies: active;quasars: emission lines;black hole physics;
 Language
English
 Cited by
 References
1.
Assef, R. J., Denney, K. D., Kochanek, C. S., et al. 2011, Black Hole Mass Estimates Based on C IV Are Consistent with Those Based on the Balmer Lines, ApJ, 742, 93 crossref(new window)

2.
Baldwin, J. A. 1977, Luminosity Indicators in the Spectra of Quasi-Stellar Objects, ApJ, 214, 679 crossref(new window)

3.
Baldwin, J., Ferland, G., Korista, K., & Verner, D. 1995, Locally Optimally Emitting Clouds and the Origin of Quasar Emission Lines, ApJ, 455, L119

4.
Bender, R., Kormendy, J., Bower, G., et al. 2005, HST STIS Spectroscopy of the Triple Nucleus of M 31: Two Nested Disks in Keplerian Rotation around a Supermassive Black Hole, ApJ, 631, 280

5.
Bentz, M. C., Peterson, B. M., Netzer, H., et al. 2009, The Radius–Luminosity Relationship for Active Galactic Nuclei: The Effect of Host-Galaxy Starlight on Luminosity Measurements. II. The Full Sample of Reverberation-Mapped AGNs, ApJ, 697, 160 crossref(new window)

6.
Fabian, A. C. 2012, Observational Evidence of Active Galactic Nuclei Feedback, ARAA, 50, 455 crossref(new window)

7.
Ferrarese, L., & Ford, H. 2005, Supermassive Black Holes in Galactic Nuclei: Past, Present and Future Research, Space Sci. Rev., 116, 523 crossref(new window)

8.
Fletcher, A. B. 2003, Massive Black Hole Evolution in Radio-Loud Active Galactic Nuclei, JKAS, 36, 177

9.
Greene, J. E., & Ho, L. C. 2005, Estimating Black Hole Masses in Active Galaxies Using the Hα Emission Line, ApJ, 630, 122 crossref(new window)

10.
Herrnstein, J. R., Moran, J. M., Greenhill, L. J., & Trotter, A. S. 2005, The Geometry of and Mass Accretion Rate Through the Maser Accretion Disk in NGC 4258, ApJ, 629, 719 crossref(new window)

11.
Ho, L. C., Goldini, P., Dong, X.-B., et al. 2012, Simultaneous Ultraviolet and Optical Emission-Line Profiles of Quasars: Implications for Black Hole Mass Determination, ApJ, 754, 11 crossref(new window)

12.
Jun, H. D., Im, M., Lee, H. M., et al. 2015, Rest-Frame Optical Spectra and Black Hole Masses of 3 < z < 6 Quasars, arXiv:1504.00058

13.
Kaspi, S., Brandt, W. N., Netzer, H., et al. 2007, Reverberation Mapping of High-Luminosity Quasars: First Results, ApJ, 659, 997 crossref(new window)

14.
Kim, D., Im, M., & Kim, M. 2010, New Estimators of Black Hole Mass in Active Galactic Nuclei with Hydrogen Paschen Lines, ApJ, 724, 386 crossref(new window)

15.
Kim, J.-Y., & Trippe, S. 2013, How to Monitor AGN Intra Day Variability at 230 GHz, JKAS, 46, 65

16.
Netzer, H. 2013, The Physics and Evolution of Active Galactic Nuclei (Cambridge: Cambridge University Press)

17.
Oh, S., Kim, S. S., & Figer, D. F. 2009, Mass Distribution in the Central Few Parsecs of Our Galaxy, JKAS, 42, 17

18.
Park, J.-H., & Trippe, S. 2012, Multiple Emission States in Active Galactic Nuclei, JKAS, 45, 147

19.
Park, J.-H., & Trippe, S. 2014, Radio Variability and Random Walk Noise Properties of Four Blazars, ApJ, 785, 76 crossref(new window)

20.
Park, D., Woo, J.-H., Denney, K. D., & Shin, J. 2013, Calibrating CIV-Based Black Hole Mass Estimators, ApJ, 770, 87 crossref(new window)

21.
Peterson, B. M. 1993, Reverberation Mapping of Active Galactic Nuclei, PASP, 105, 247 crossref(new window)

22.
Runnoe, J. C., Brotherton, M. S., Shang, Z., & DiPompeo, M. A. 2013, Rehabilitating CIV-Based Black Hole Mass Estimates in Quasars, MNRAS, 434, 848 crossref(new window)

23.
Schramm, K.-J., Borgeest, U., Camenzind, M., et al. 1993, Recent Activity in the Optical and Radio Lightcurves of the Blazar 3C 345: Indications for a ‘Lighthouse Effect’ due to Jet Rotation, A&A, 278, 391

24.
Trippe, S. 2014, Does the Jet Production Efficiency of Radio Galaxies Control Their Optical AGN Types?, JKAS, 47, 159

25.
Vanden Berk, D. E., Richards, G. T., Bauer, A., et al. 2001, Composite Quasar Spectra from the Sloan Digital Sky Survey, AJ, 122, 549 crossref(new window)

26.
Vestergaard, M., & Peterson, B. M. 2006, Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relations, ApJ, 641, 689 crossref(new window)

27.
Walsh, J. L., Barth, A. J., Ho, J. C., & Sarzi, M. 2013, The M 87 Black Hole Mass from Gas-Dynamical Models of Space Telescope Imaging Spectrograph Observations, ApJ, 770, 86 crossref(new window)

28.
Xu, Y., Bian, W.-H., Yuan, Q.-R., & Huang, K.-L. 2008, The Origin and Evolution of CIV Baldwin Effect in QSOs from the Sloan Digital Sky Survey, MNRAS, 389, 1703 crossref(new window)