JOURNAL BROWSE
Search
Advanced SearchSearch Tips
HORIZON RUN 4 SIMULATION: COUPLED EVOLUTION OF GALAXIES AND LARGE-SCALE STRUCTURES OF THE UNIVERSE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
HORIZON RUN 4 SIMULATION: COUPLED EVOLUTION OF GALAXIES AND LARGE-SCALE STRUCTURES OF THE UNIVERSE
KIM, JUHAN; PARK, CHANGBOM; L'HUILLIER, BENJAMIN; HONG, SUNGWOOK E.;
  PDF(new window)
 Abstract
The Horizon Run 4 is a cosmological N-body simulation designed for the study of coupled evolution between galaxies and large-scale structures of the Universe, and for the test of galaxy formation models. Using 63003 gravitating particles in a cubic box of Lbox = 3150 h−1Mpc, we build a dense forest of halo merger trees to trace the halo merger history with a halo mass resolution scale down to Ms = 2.7 × 1011h−1M. We build a set of particle and halo data, which can serve as testbeds for comparison of cosmological models and gravitational theories with observations. We find that the FoF halo mass function shows a substantial deviation from the universal form with tangible redshift evolution of amplitude and shape. At higher redshifts, the amplitude of the mass function is lower, and the functional form is shifted toward larger values of ln(1/σ). We also find that the baryonic acoustic oscillation feature in the two-point correlation function of mock galaxies becomes broader with a peak position moving to smaller scales and the peak amplitude decreasing for increasing directional cosine μ compared to the linear predictions. From the halo merger trees built from halo data at 75 redshifts, we measure the half-mass epoch of halos and find that less massive halos tend to reach half of their current mass at higher redshifts. Simulation outputs including snapshot data, past lightcone space data, and halo merger data are available at http://sdss.kias.re.kr/astro/Horizon-Run4.
 Keywords
cosmology: large-scale structure of universe;galaxies: evolution;methods: numerical;
 Language
English
 Cited by
1.
HECTOMAP AND HORIZON RUN 4: DENSE STRUCTURES AND VOIDS IN THE REAL AND SIMULATED UNIVERSE, The Astrophysical Journal, 2016, 818, 2, 173  crossref(new windwow)
2.
Approximate Methods for the Generation of Dark Matter Halo Catalogs in the Age of Precision Cosmology, Galaxies, 2016, 4, 4, 53  crossref(new windwow)
3.
THE MOST BOUND HALO PARTICLE–GALAXY CORRESPONDENCE MODEL: COMPARISON BETWEEN MODELS WITH DIFFERENT MERGER TIMESCALES, The Astrophysical Journal, 2016, 823, 2, 103  crossref(new windwow)
 References
1.
Abramson, L. E., Kelson, D. D., Dressler, A., Poggianti, B., Gladders, M. D., Oemler, A. Jr., & Vulcani, B. 2014, The Mass-Independence of Specific Star Formation Rates in Galactic Disks, ApJL, 785, L36 crossref(new window)

2.
Angulo, R. E., Springel, V., White, S. D. M., Jenkins, A., Baugh, C. M. & Frenk, C. S. 2012, Scaling Relations for Galaxy Clusters in the Millennium-XXL Simulation, MNRAS, 426, 2046 crossref(new window)

3.
Baugh, C. M. 2006, A Primer on Hierarchical Galaxy Formation: The Semi-Analytical Approach, Rep. Prog. Phys., 69, 310

4.
Berlind, A. A., & Weinberg, D. H. 2002, The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass, ApJ, 575, 587 crossref(new window)

5.
Bhattacharya, S., Heitmann, K.,White, M., Lukic, Z.,Wagner, C., & Habib, H. 2011, Mass Function Predictions beyond CDM, ApJ, 732, 122 crossref(new window)

6.
Blanton, M. R., & Berlind, A. A. 2007, What Aspects of Galaxy Environment Matter?, ApJ, 664, 791 crossref(new window)

7.
Choi, Y.-Y., Han, D.-H., & Kim, S. S. 2010, Korea Institute for Advanced Study Value-Added Galaxy Catalog, JKAS, 43, 191

8.
Choi, Y.-Y., Kim, J., Rossi, G., Kim, S. S., & Lee, J.-E. 2013, Topology of Luminous Red Galaxies from the Sloan Digital Sky Survey, ApJS, 209, 19 crossref(new window)

9.
Choi, Y.-Y. et al. 2015, in preparation

10.
Cole, S., Aragon-Salamanca, A., Frenk, C. S., Navarro, J. F., & Zepf, S. E. 1994, A Recipe for Galaxy Formation, MNRAS, 271, 781 crossref(new window)

11.
Crocce, M., Pueblas, S., & Scoccimarro, R. 2006, Transients from Initial Conditions in Cosmological Simulations, MNRAS, 373, 369 crossref(new window)

12.
Crocce, M., Fosalba, P., Castander, F. J., & Gaztanaga, E. 2010, Simulating the Universe with MICE: The Abundance of Massive Clusters, MNRAS, 403, 1353 crossref(new window)

13.
De Lucia, G., Kauffmann, G., & White, S. D. M. 2004, Substructures in Cold Dark Matter Haloes, MNRAS, 349, 1101 crossref(new window)

14.
Dekel, A., Zolotov, A., Tweed, D., et al. 2013, Toy Models for Galaxy Formation versus Simulations, MNRAS, 435, 999 crossref(new window)

15.
Dubinski, J. 1996, A Parallel Tree Code, New Astron., 1, 133 crossref(new window)

16.
Dubinski, J., Kim, J., Park, C., & Humble, R. 2004, GOTPM: A Parallel Hybrid Particle-Mesh Treecode, New Astron., 9, 111 crossref(new window)

17.
Dunkley, J., Komatsu, E., Nolta, M. R., et al. 2009, Five-Year Wilkinson Microwave Anisotropy Probe Observations: Likelihoods and Parameters from the WMAP Data, ApJS, 180, 306 crossref(new window)

18.
Eisenstein, D. J., & Hu, W. 1998, Baryonic Features in the Matter Transfer Function, ApJ, 496, 605 crossref(new window)

19.
Gao, L, De Lucia, G., White, S. D. M., & Jenkins, A. 2004, Galaxies and Subhaloes in CDM Galaxy Clusters, MNRAS, 352, L1 crossref(new window)

20.
Guo, Q., White, S. D. M., Boylan-Kolchin, M., De Lucia, G., Kauffmann, G., Lemson, G., Li, C., Springel, V., & Weinmann, S. 2011, From Dwarf Spheroidals to cD Galaxies: Simulating the Galaxy Population in a CDM Cosmology, MNRAS, 413, 101 crossref(new window)

21.
Guo, Q., & White, S. 2014, Numerical Resolution Limits on Subhalo Abundance Matching, MNRAS, 437, 3228 crossref(new window)

22.
Hamilton, A. J. S. 1993, Toward Better Ways to Measure the Galaxy Correlation Function, ApJ, 417, 19 crossref(new window)

23.
Hoffmann, K., et al. 2014, Subhaloes Gone Notts: Subhaloes as Tracers of the Dark Matter Halo Shape, MNRAS, 442, 1197 crossref(new window)

24.
Hong, S. E., Park, C., & Kim, J. 2015, The Most Bound Halo Particle–alaxy Correspondence Model of Galaxy Distributions: Implementation of Merger Timescale, submitted to ApJ

25.
Hwang, J.-C., Noh, H., & Gong, J.-O. 2012, Second-Order Solutions of Cosmological Perturbation in the Matter-Dominated Era, ApJ, 752, 50 crossref(new window)

26.
Jenkins, A., Frenk, C. S., White, S. D. M., Colberg, J. M., Cole, S., Evrard, A. E., Couchman, H. M. P., & Yoshida, N. 2001, The Mass Function of Dark Matter Haloes, MNRAS, 321, 372 crossref(new window)

27.
Jenkins, A. 2010, Second-Order Lagrangian Perturbation Theory Initial Conditions for Resimulations, MNRAS, 403, 1859 crossref(new window)

28.
Kauffmann, G., Nusser, A., & Steinmetz, M. 1997, Galaxy Formation and Large-Scale Bias, MNRAS, 286, 795 crossref(new window)

29.
Kauffmann, G., White, S. D. M., Heckman, T. M., Ménard, B., Brinchmann, J., Charlot, S., Tremonnti, G., & Brinkmann, J. 2004, The Environmental Dependence of the Relations between Stellar Mass, Structure, Star Formation and Nuclear Acitivity in Galaxies, MNRAS, 353, 713 crossref(new window)

30.
Kim, Y.-R., Choi, Y.-Y., Kim, S. S., Kim, K.-S., Lee, J.-E., Shin, J., & Kim, M. 2014, Systematic Effects on the Genus Topology of the Large-Scale Structure of the Universe, ApJS, 212, 22 crossref(new window)

31.
Kim, J., & Park, C. 2006, A New Halo-Finding Method for N-Body Simulations, ApJ, 639, 600 crossref(new window)

32.
Kim, J., Park, C., Gott, J. R., & Dubinski, J. 2009, The Horizon Run N-body Simulation: Baryon Acoustic Oscillations and Topology of Large-Scale Structure of the Universe, ApJ, 701, 1547 crossref(new window)

33.
Kim, J., Park, C., & Choi, Y.-Y. 2008, A Subhalo–Galaxy Correspondence Model of Galaxy Biasing, ApJ, 683, 123 crossref(new window)

34.
Kim, J., Park, C., Rossi, G., Lee, S. M., & Gott, J. R. 2011, The New Horizon Run Cosmological N-Body Simulations, JKAS, 44. 217

35.
Klypin, A., Prada, F., Yepes, G., Heß, S., & Gottlöber, S. 2015, Halo Abundance Matching: Accuracy and Conditions for Numerical Convergence, MNRAS, 447, 3693 crossref(new window)

36.
Kravtsov, A., Vikhlinin, A., & Meshscheryakov, A. 2014, Stellar Mass–alo Mass Relation and Star Formation Efficiency in High-Mass Halos, arXiv:1401.7329v1

37.
L’uillier, B., Park, C., & Kim, J. 2014, Effects of the Initial Conditions on Cosmological N-Body Simulations, New Astron., 30, 79 crossref(new window)

38.
Lee, J. et al. 2014, Sussing Merger Trees: The Impact of Halo Merger Trees on Galaxy Properties in a Semi-Analytic Model, MNRAS, 445, 4197 crossref(new window)

39.
Lewis, A., Challinor, A., & Lasenby, A. 2000, Efficient Computation of Cosmic Microwave Background Anisotropies in Closed Friedmann-Robertson-Walker Models, ApJ, 538, 473 crossref(new window)

40.
Lukić, Z., Heitmann, K., Habib, S., Bashinsky, S., & Ricker, P. 2007, The Halo Mass Function: High-Redshift Evolution and Universality, ApJ, 671, 1160 crossref(new window)

41.
Manera, M., Sheth, R. K., & Scoccimarro, R. 2010, Large-Scale Bias and the Inaccuracy of the Peak-Background Split, MNRAS, 402, 589 crossref(new window)

42.
Muldrew, S. I., Pearce, F. R., & Power, C. 2011, The Accuracy of Subhalo Detection, MNRAS, 410, 2617 crossref(new window)

43.
Onions, et al. 2012, Subhaloes Going Notts: The Subhalo-Finder Comparison Project, MNRAS, 423, 1200 crossref(new window)

44.
Park, C., Choi, Y.-Y., Kim, J., Gott, J. R., Kim, S. S., & Kim, K.-S. 2012, The Challenge of the Largest Structures in the Universe to Cosmology, ApJL, 759, L7 crossref(new window)

45.
Reddick, R. M., Wechsler, R. H., Tinker, J. L., & Behroozi, P. S. 2013, The Connection Between Galaxies and Dark Matter Structures in the Local Universe, ApJ, 771, 30 crossref(new window)

46.
Rigopoulos, G., & Valkenburg, W. 2015, On the Accuracy of N-Body Simulations at Very Large Scales, MNRAS, 446, 677

47.
Rodríguez-Puebla, A., Avila-Reese, V., & Drory, N. 2013, The Galaxy-Halo/Subhalo Connection: Mass Relations and Implications for Some Satellite Occupational Distributions, ApJ, 767, 92 crossref(new window)

48.
Rossi, G., Sheth, R. K., & Tormen, G. 2011, Modelling the Shapes of the Largest Gravitationally Bound Objects, MNRAS, 416, 248

49.
Sheth, R. K., & Tormen, G. 1999, Large-Scale Bias and the Peak Background Split, MNRAS, 308, 119 crossref(new window)

50.
Speare, R., Gott, J. R., Kim, J., & Park, C. 2015, Horizon Run 3: Topology as a Standard Ruler, ApJ, 799, 176 crossref(new window)

51.
Tatekawa, T., & Mizuno, S. 2007, Transients from Initial Conditions Based on Lagrangian Perturbation Theory in N-Body Simulations, JCAP, 12, 014

52.
Tinker, J., Kravtsov, A. V., Klypin, A., Abazajian, K.,Warren, M., Yepes, G., Gottlöber, S., & Holz, D. E. 2008, Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality

53.
Trujillo-Gomez, S., Klypin, A., Primack, J., & Romanowsky, A. J. 2011, Galaxies in CDM with Halo Abundance Matching: Luminosity–Velocity Relation, Maryonic Mass–Velocity Relation, Velocity Function, and Clustering, ApJ, 742, 16 crossref(new window)

54.
Wang, Y. O., Lin, W. P., Kang, X., Dutton, A., Yu, Y., & Macció, A. V. 2014, Satellite Alignment. I. Distribution of Substructures and Their Dependence on Assembly History from N-Body Simulations, ApJ, 786, 8 crossref(new window)

55.
Warren, M. S., Abazajian, K., Holz, D. E., & Teodoro, L. 2006, Precision Determination of the Mass Function of Dark Matter Halos, ApJ, 646, 881 crossref(new window)

56.
Watson, W. A., Iliev, I. T., D’Aloisio, A., Knebe, A., Shapiro, P. R., & Yepes, G. 2013, The Halo Mass Function through the Cosmic Ages, MNRAS, 433, 1230 crossref(new window)

57.
Weinberg, D. H., Colombi, S., Davé, R., & Katz, N. 2008, Baryon Dynamics, DarkMatter Substructure, and Galaxies, ApJ, 678, 6 crossref(new window)

58.
Zhao, H. 2004, Dynamical Friction for Dark Halo Satellites: Effects of Tidal Mass Loss and Growing Host Potential, MNRAS, 351, 891 crossref(new window)

59.
Zheng, Z., et al. 2005, Theoretical Models of the Halo Occupation Distribution: Separating Central and Satellite Galaxies, ApJ, 633, 791 crossref(new window)

60.
Zheng, Z., Zehavi, I., Eisenstein, D. J., Weinberg, D. H., & Jing, Y. P. 2009, Halo Occupation Distribution Modeling of Clustering of Luminous Red Galaxies, ApJ, 707, 554 crossref(new window)