JOURNAL BROWSE
Search
Advanced SearchSearch Tips
STRUCTURE OF A MAGNETIC DECREASE OBSERVED IN A COROTATING INTERACTION REGION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
STRUCTURE OF A MAGNETIC DECREASE OBSERVED IN A COROTATING INTERACTION REGION
LEE, ENSANG; PARKS, GEORGE K.;
  PDF(new window)
 Abstract
Magnetic decreases are often observed in various regions of interplanetary space. Many studies are devoted to reveal the physical nature and generation mechanism of the magnetic decreases, but still we do not fully understand magnetic decreases. In this study, we investigate the structure of a magnetic decrease observed in a corotating interaction region using multi-spacecraft measurements. We use three spacecraft, ACE, Cluster, and Wind, which were widely separated in the x- and y-directions in the geocentric solar ecliptic (GSE) coordinates. The boundaries of the magnetic decrease are the same at the three locations and can be identified as tangential discontinuities. A notable feature is that the magnetic decrease has very large dimension, ≳ RE, along the boundary, which is much larger than the size, ~ 6 RE, along the normal direction. This suggests that the magnetic decrease has a shape of a long, thin rod or a wide slab.
 Keywords
Solar wind plasma;Interplanetary magnetic fields;Discontinuities;Corotating streams;
 Language
English
 Cited by
 References
1.
Balogh, A., Carr, C. M., Acuña, M. H., et al. 2001, The Cluster Magnetic Field Investigation: Overview of In-Flight Performance and Initial Results, Ann. Geophys., 19, 1207 crossref(new window)

2.
Baumgärtel, K. 1999, Soliton Approach to Magnetic Holes, J. Geophys. Res., 104, 28295 crossref(new window)

3.
Burlaga, L. F., & Lemaire, J. F. 1978, Interplanetary Magnetic Holes: Theory, J. Geophys. Res., 83, 5157 crossref(new window)

4.
Buti, B., Tsurutani, B. T., Neugebauer, M., & Goldstein, B. E. 2001, Generation Mechanism for Magnetic Holes in the Solar Wind, Geophys. Res. Lett., 28, 1355 crossref(new window)

5.
Lepping, R. P., Acuña, M. H., Burlaga, L. F., et al. 1995, The WIND Magnetic Field Investigation, Space Sci. Rev., 71, 207 crossref(new window)

6.
McComas, D. J., Bame, S. J., Barker, P., et al. 1998, Solar Wind Electron Proton AlphaMonitor (SWEPAM) for the Advanced Composition Explorer, Space Sci. Rev., 86, 563 crossref(new window)

7.
Rème, H., Aoustin, C., Bosqued, J. M., et al. 2001, First Multispacecraft Ion Measurements in and near the Earth’s Magnetosphere with the Identical Cluster Ion Spectrometry (CIS) Experiment, Ann. Geophys., 19, 1303 crossref(new window)

8.
Smith, C. W., Acuña, M. H., Burlaga, L. F., et al. 1998, The ACE Magnetic Field Experiment, Space Sci. Rev., 86, 613 crossref(new window)

9.
Sonnerup, B. U. Ö., & Cahill, Jr. L. J. 1967, Magnetopause Structure and Attitude from Explorer 12 Observations, J. of Geophys. Res., 72, 171 crossref(new window)

10.
Tsubouchi, K. 2009, Alfvén Wave Evolution within Corotating Interaction Regions Associated with the Formation of Magnetic Holes/Decreases, J. Geophys. Res., 114, A02101 crossref(new window)

11.
Tsurutani, B. T., & Ho, C. M. 1999, A Review of Discontinuities and Alfvén Waves in Interplanetary Space: Ulysses Results, Rev. Geophys., 37, 517 crossref(new window)

12.
Tsurutani, B. T., Dasgupta, B., Galvan, C., et al. 2002a, Phase-Steepened Alfvén Waves, Proton Perpendicular Energization and Creation of Magnetic Holes and Magnetic Decreases: The Ponderomotive Force, Geophys. Res. Lett., 29, 2233

13.
Tsurutani, B. T., Galvan, C., Arballo, J. K., et al. 2002b, Relationship between Discontinuities, Magnetic Holes, Magnetic Decreases, and Nonlinear Alfvén Waves: Ulysses Observations over the Solar Poles, Geophys. Res. Lett., 29, 1528 crossref(new window)

14.
Tsurutani, B. T., Lakhina, G. S., Pickett, J. S., et al. 2005a, Nonlinear Alfvén waves, Discontinuities, Proton Perpendicular Acceleration, and Magnetic Holes/Decreases in Interplanetary Space and the Magnetosphere: Intermediate Shocks?, Nonlin. Proc. Geophys., 12, 321 crossref(new window)

15.
Tsurutani, B. T., Guarnieri, F. L., Lakhina, G. S., & Hada, T. 2005b, Rapid Evolution of Magnetic Decreases (MDs) and Discontinuities in the Solar Wind: ACE and CLUSTER, Geophys. Res. Lett., 32, L10103 crossref(new window)

16.
Tsurutani, B. T., Guarneiri, F. L., Echer, E., Lakhina, G. S., & Verkhoglyadova, O. P. 2009, Magnetic Decrease (MD) Formation from <1 AU to ∼5 AU: Corotating Interaction Region Reverse Shocks, J. Geophys. Res., 114, A08105

17.
Tsurutani, B. T., Lakhina, G. S., Verkhoglyadova, O. P., Echer, E., & Guarnieri, F. L. 2010, Magnetic Decreases (MDs) and Mirror Modes: Two Different Plasma β Changing Mechanisms, Nonlin. Proc. Geophys., 17, 467 crossref(new window)

18.
Turner, J. M., Burlaga, L. F., Ness, N. F., & Lemaire, J. F. 1977, Magnetic Holes in the Solar Wind, J. Geophys. Res., 82, 1921 crossref(new window)

19.
Winterhalter, D., Neugebauer, M., Goldstein, B. E., et al. 1994, Ulysses Field and Plasma Observations of Magnetic Holes in the Solar Wind and Their Relation to Mirror-Mode Structures, J. Geophys. Res., 99, 23,371

20.
Winterhalter, D., Smith, E. J., Neugebauer, M., Goldstein, B. E., & Tsurutani, B. T. 2000, The Latitudinal Distribution of Solar Wind Magnetic Holes, Geophys. Res. Lett., 27, 1615 crossref(new window)