JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE INFRARED MEDIUM-DEEP SURVEY. V. A NEW SELECTION STRATEGY FOR QUASARS AT z > 5 BASED ON MEDIUM-BAND OBSERVATIONS WITH SQUEAN
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE INFRARED MEDIUM-DEEP SURVEY. V. A NEW SELECTION STRATEGY FOR QUASARS AT z > 5 BASED ON MEDIUM-BAND OBSERVATIONS WITH SQUEAN
JEON, YISEUL; IM, MYUNGSHIN; PAK, SOOJONG; HYUN, MINHEE; KIM, SANGHYUK; KIM, YONGJUNG; LEE, HYE-IN; PARK, WOOJIN;
  PDF(new window)
 Abstract
Multiple color selection techniques are successful in identifying quasars from wide-field broadband imaging survey data. Among the quasars that have been discovered so far, however, there is a redshift gap at 5 ≲ z ≲ 5.7 due to the limitations of filter sets in previous studies. In this work, we present a new selection technique of high redshift quasars using a sequence of medium-band filters: nine filters with central wavelengths from 625 to 1025 nm and bandwidths of 50 nm. Photometry with these medium-bands traces the spectral energy distribution (SED) of a source, similar to spectroscopy with resolution R ~ 15. By conducting medium-band observations of high redshift quasars at 4.7 ≤ z ≤ 6.0 and brown dwarfs (the main contaminants in high redshift quasar selection) using the SED camera for QUasars in EArly uNiverse (SQUEAN) on the 2.1-m telescope at the McDonald Observatory, we show that these medium-band filters are superior to multi-color broad-band color section in separating high redshift quasars from brown dwarfs. In addition, we show that redshifts of high redshift quasars can be determined to an accuracy of Δz/(1 + z)
 Keywords
observations:quasars:general;quasars:supermassive black holes;surveys;
 Language
English
 Cited by
1.
Development of SED Camera for Quasars in Early Universe (SQUEAN), Publications of the Astronomical Society of the Pacific, 2016, 128, 969, 115004  crossref(new windwow)
 References
1.
Bertin, E. 2006, Automatic Astrometric and Photometric Calibration with SCAMP, ADASS XV, 351, 112

2.
Bertin, E., & Arnouts, S. 1996, SExtractor: Software for source extraction, A&AS, 117, 393 crossref(new window)

3.
Burrows, A., Sudarsky, D., & Hubeny, I. 2006, L and T Dwarf Models and the L to T Transition, ApJ, 640, 1063 crossref(new window)

4.
Carilli, C. L., Wang, R., Fan, X., et al. 2010, Ionization Near Zones Associated with Quasars at z ∼ 6, ApJ, 714, 834 crossref(new window)

5.
Choi, N., Park, W.-K., Lee, H.-I., et al. 2015, A New AutoGuiding System for CQUEAN, JKAS, 48, 177

6.
Cool, R. J., Kochanek, C. S., Eisenstein, D. J., et al. 2006, The Discovery of Three New z > 5 Quasars in the AGN and Galaxy Evolution Survey, ApJ, 132, 823 crossref(new window)

7.
De Rosa, G., Decarli, R., Walter, F., et al. 2011, Evidence for Non-evolving Fe II/Mg II Ratios in Rapidly Accreting z ∼ 6 QSOs, ApJ, 739, 56 crossref(new window)

8.
De Rosa, G., Venemans, B. P., Decarli, R., et al. 2014, Black Hole Mass Estimates and Emission-Line Roperties of a Sample of Redshift z > 6.5 Quasars, ApJ, 790, 145 crossref(new window)

9.
Fan, X., Narayanan, V. K., Lupton, R. H., et al. 2001, A Survey of z > 5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z ∼ 6, ApJ, 122, 2833 crossref(new window)

10.
Fan, X., Strauss, M. A., Schneider, D. P., et al. 2003, A Survey of z > 5.7 Quasars in the Sloan Digital Sky Survey. II. Discovery of Three Additional Quasars at z > 6, ApJ, 125, 1649 crossref(new window)

11.
Fan, X., Hennawi, J. F., Richards, G. T., et al. 2004, A Survey of z > 5.7 Quasars in the Sloan Digital Sky Survey. III. Discovery of Five Additional Quasars, ApJ, 128, 515 crossref(new window)

12.
Fan, X., Strauss, M. A., Richards, G. T., et al. 2006, A Survey of z > 5.7 Quasars in the Sloan Digital Sky Survey. IV. Discovery of Seven Additional Quasars, ApJ, 131, 1203 crossref(new window)

13.
Fan, X., Strauss, M. A., Becker, R. H., et al. 2006, Constraining the Evolution of the Ionizing Background and the Epoch of Reionization with z ∼ 6 Quasars. II. A Sample of 19 Quasars, ApJ, 132, 117 crossref(new window)

14.
Flesch, E. W. 2015, The Half Million Quasars (HMQ) Catalogue, PASA, 32, e010 crossref(new window)

15.
Gunn, J. E., & Stryker, L. L. 1983, Stellar spectrophotometric atlas, wavelengths from 3130 to 10800 A, ApJS, 52, 121 crossref(new window)

16.
Im, M., Choi, C., & Kim, K. 2015, Lee Sang Gak Telescope (LSGT): A Remotely Operated Robotic Telescope for Education and Research at Seoul National University, JKAS, 48, 207

17.
Ikeda, H., Nagao, T., Matsuoka, K., et al. 2012, Constraints on the Faint End of the Quasar Luminosity Function at z ∼ 5 in the COSMOS Field, ApJ, 756, 160 crossref(new window)

18.
Jiang, L., Fan, X., Vestergaard, M., et al. 2007, Gemini Near-Infrared Spectroscopy of Luminous z ∼ 6 Quasars: Chemical Abundances, Black Hole Masses, and Mg II Absorption, ApJ, 134, 1150 crossref(new window)

19.
Jiang, L., Fan, X., Annis, J., et al. 2008, A Survey of z ∼ 6 Quasars in the Sloan Digital Sky Survey Deep Stripe. I. A Flux-Limited Sample at zAB < 21, ApJ, 135, 1057 crossref(new window)

20.
Jiang, L., Fan, X., Bian, F., et al. 2009, A Survey of z ∼ 6 Quasars in the Sloan Digital Sky Survey Deep Stripe. II. Discovery of Six Quasars at zAB>21, ApJ, 138, 305 crossref(new window)

21.
Jiang, L., McGreer, I. D., Fan, X., et al. 2015, Discovery of Eight z ∼ 6 Quasars in the Sloan Digital Sky Survey Overlap Regions, ApJ, 149, 188 crossref(new window)

22.
Juarez, Y., Maiolino, R., Mujica, R., et al. 2009, The metallicity of the most distant quasars, A&A, 494, L25 crossref(new window)

23.
Jun, H. D., Im, M., Lee, H. M., et al. 2015, Rest-Frame Optical Spectra and Black Hole Masses of 3 <z<6 Quasars, ApJ, 806, 109 crossref(new window)

24.
Kim, E., Park, W.-K., Jeong, H., et al. 2011, Auto-Guiding System for CQUEAN (Camera for Quasars in Early Universe), JKAS, 44, 115

25.
Kurk, J. D., Walter, F., Fan, X., et al. 2007, Black Hole Masses and Enrichment of z ∼ 6 SDSS Quasars, ApJ, 669, 32 crossref(new window)

26.
Lawrence, A., Warren, S. J., Almaini, O., et al. 2007, The UKIRT Infrared Deep Sky Survey (UKIDSS), MNRAS, 379, 1599 crossref(new window)

27.
Lim, J., Chang, S., Pak, S., et al. 2013, Focal Reducer for CQUEAN (Camera for QUasars in EArly uNiverse), JKAS, 46, 161

28.
Madau, P., Ferguson, H. C., Dickinson, M. E., et al. 1996, High-Redshift Galaxies in the Hubble Deep Field: Colour Selection and Star Formation History to z ∼ 4, MNRAS, 283, 1388 crossref(new window)

29.
Mahabal, A., Stern, D., Bogosavljević, M., Djorgovski, S. G., & Thompson, D. 2005, Discovery of an Optically Faint Quasar at z = 5.70 and Implications for the Faint Endof the Quasar Luminosity Function, ApJ, 634, L9 crossref(new window)

30.
Matute, I., Masegosa, J., Márquez, I., et al. 2013, The ALHAMBRA Survey: Discovery of a Faint QSO at z = 5.41, A&A, 557, A78 crossref(new window)

31.
McGreer, I. D., Mesinger, A., & Fan, X. 2011, The First (nearly) Model-Independent Constraint on the Neutral Hydrogen Fraction at z ∼ 6, MNRAS, 415, 3237 crossref(new window)

32.
McGreer, I. D., Jiang, L., Fan, X., et al. 2013, The z = 5 Quasar Luminosity Function from SDSS Stripe 82, ApJ, 768, 105 crossref(new window)

33.
Moles, M., Benítez, N., Aguerri, J. A. L., et al. 2008, The Alhambra Survey: a Large Area Multimedium-Band Optical and Near-Infrared Photometric Survey, ApJ, 136, 1325 crossref(new window)

34.
Mortlock, D. J., Patel, M., Warren, S. J., et al. 2009, Discovery of a Redshift 6.13 Quasar in the UKIRT Infrared Deep Sky Survey, A&A, 505, 97 crossref(new window)

35.
Mortlock, D. J., Warren, S. J., Venemans, B. P., et al. 2011, A Luminous Quasar at a Redshift of z = 7.085, Nature, 474, 616 crossref(new window)

36.
Oke, J. B. 1990, Faint Spectrophotometric Standard Stars, ApJ, 99, 1621 crossref(new window)

37.
Park, W.-K., Pak, S., Im, M., et al. 2012, Camera for Quasars in Early Universe (CQUEAN), PASP, 124, 839 crossref(new window)

38.
Richards, G. T., Fan, X., Newberg, H. J., et al. 2002, Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample, ApJ, 123, 2945 crossref(new window)

39.
Richards, G. T., Myers, A. D., Gray, A. G., et al. 2009, Efficient Photometric Selection of Quasars from the Sloan Digital Sky Survey. II. 1,000,000 Quasars from Data Release 6, ApJS, 180, 67 crossref(new window)

40.
Richards, G. T., Myers, A. D., Peters, C. M., et al. 2015, Bayesian High-Redshift Quasar Classification from Optical and Mid-IR Photometry, arXiv:1507.07788

41.
Schneider, D. P., Fan, X., Strauss, M. A., et al. 2001, High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data. V. Hobby-Eberly Telescope Observations, ApJ, 121, 1232 crossref(new window)

42.
Sharp, R. G., McMahon, R. G., Irwin, M. J., & Hodgkin, S. T. 2001, First Results from the Isaac Newton Telescope Wide Angle Survey: the z > 5 Quasar Survey, MNRAS, 326, L45 crossref(new window)

43.
Shim, H., Im, M., Choi, P., Yan, L., & Storrie-Lombardi, L. 2007, Massive Lyman Break Galaxies at z ∼ 3 in the Spitzer Extragalactic First Look Survey, ApJ, 669, 749 crossref(new window)

44.
Vanden Berk, D. E., Richards, G. T., Bauer, A., et al. 2001, Composite Quasar Spectra from the Sloan Digital Sky Survey, ApJ, 122, 549 crossref(new window)

45.
Willott, C. J., Delorme, P., Omont, A., et al. 2007, Four Quasars above Redshift 6 Discovered by the Canada-France High-z Quasar Survey, ApJ, 134, 2435 crossref(new window)

46.
Willott, C. J., Delorme, P., Reylé, C., et al. 2009, Six More Quasars at Redshift 6 Discovered by the Canada-France High-z Quasar Survey, ApJ, 137, 3541 crossref(new window)

47.
Willott, C. J., Delorme, P., Reylé, C., et al. 2010, The Canada-France High-z Quasar Survey: Nine New Quasars and the Luminosity Function at Redshift 6, ApJ, 139, 906 crossref(new window)

48.
Wu, X.-B., & Jia, Z. 2010, Quasar Candidate Selection and Photometric Redshift Estimation Based on SDSS and UKIDSS Data, MNRAS, 406, 1583

49.
Yi, W., Wu, X., Wang, F., et al. 2015, Discovery of Two Broad Absorption Line Quasars at Redshift about 4.75 Using the Lijiang 2.4 m telescope, Science China Physics, Mechanics, and Astronomy, 58, 5685

50.
Zheng, W., Tsvetanov, Z. I., Schneider, D. P., et al. 2000, Five High-Redshift Quasars Discovered in Commissioning Imaging Data of the Sloan Digital Sky Survey, ApJ, 120, 1607 crossref(new window)