JOURNAL BROWSE
Search
Advanced SearchSearch Tips
KMTNET: A NETWORK OF 1.6 M WIDE-FIELD OPTICAL TELESCOPES INSTALLED AT THREE SOUTHERN OBSERVATORIES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
KMTNET: A NETWORK OF 1.6 M WIDE-FIELD OPTICAL TELESCOPES INSTALLED AT THREE SOUTHERN OBSERVATORIES
KIM, SEUNG-LEE; LEE, CHUNG-UK; PARK, BYEONG-GON; KIM, DONG-JIN; CHA, SANG-MOK; LEE, YONGSEOK; HAN, CHEONGHO; CHUN, MOO-YOUNG; YUK, INSOO;
  PDF(new window)
 Abstract
The Korea Microlensing Telescope Network (KMTNet) is a wide-field photometric system installed by the Korea Astronomy and Space Science Institute (KASI). Here, we present the overall technical specifications of the KMTNet observation system, test observation results, data transfer and image processing procedure, and finally, the KMTNet science programs. The system consists of three 1.6 m wide-field optical telescopes equipped with mosaic CCD cameras of 18k by 18k pixels. Each telescope provides a 2.0 by 2.0 square degree field of view. We have finished installing all three telescopes and cameras sequentially at the Cerro-Tololo Inter-American Observatory (CTIO) in Chile, the South African Astronomical Observatory (SAAO) in South Africa, and the Siding Spring Observatory (SSO) in Australia. This network of telescopes, which is spread over three different continents at a similar latitude of about -30 degrees, enables 24-hour continuous monitoring of targets observable in the Southern Hemisphere. The test observations showed good image quality that meets the seeing requirement of less than 1.0 arcsec in I-band. All of the observation data are transferred to the KMTNet data center at KASI via the international network communication and are processed with the KMTNet data pipeline. The primary scientific goal of the KMTNet is to discover numerous extrasolar planets toward the Galactic bulge by using the gravitational microlensing technique, especially earth-mass planets in the habitable zone. During the non-bulge season, the system is used for wide-field photometric survey science on supernovae, asteroids, and external galaxies.
 Keywords
telescopes:KMTNet;techniques:photometric;surveys:wide-field;stars:planetary systems;
 Language
English
 Cited by
1.
Campaign 9 of the K2 Mission: Observational Parameters, Scientific Drivers, and Community Involvement for a Simultaneous Space- and Ground-based Microlensing Survey, Publications of the Astronomical Society of the Pacific, 2016, 128, 970, 124401  crossref(new windwow)
2.
Free-floating planets from core accretion theory: microlensing predictions, Monthly Notices of the Royal Astronomical Society: Letters, 2016, 461, 1, L107  crossref(new windwow)
3.
OGLE-2015-BLG-0051/KMT-2015-BLG-0048LB: A GIANT PLANET ORBITING A LOW-MASS BULGE STAR DISCOVERED BY HIGH-CADENCE MICROLENSING SURVEYS, The Astronomical Journal, 2016, 152, 4, 95  crossref(new windwow)
4.
MASS MEASUREMENTS OF ISOLATED OBJECTS FROM SPACE-BASED MICROLENSING, The Astrophysical Journal, 2016, 825, 1, 60  crossref(new windwow)
5.
SPACE-BASED MICROLENS PARALLAX OBSERVATION AS A WAY TO RESOLVE THE SEVERE DEGENERACY BETWEEN MICROLENS-PARALLAX AND LENS-ORBITAL EFFECTS, The Astrophysical Journal, 2016, 827, 1, 11  crossref(new windwow)
6.
SPITZEROBSERVATIONS OF OGLE-2015-BLG-1212 REVEAL A NEW PATH TOWARD BREAKING STRONG MICROLENS DEGENERACIES, The Astrophysical Journal, 2016, 820, 1, 79  crossref(new windwow)
 References
1.
Atwood, B., O'Brien, T. P., Colarosa, C., et al. 2012, Design of the KMTNet Large Format CCD Camera, Proc. SPIE, 8446-6G

2.
Beaulieu, J.-P., Bennett, D. P., Fouque, P., et al. 2006, Discovery of a Cool Planet of 5.5 Earth Masses through Gravitational Microlensing, Nature, 439, 437 crossref(new window)

3.
Bond, I. A., Udalski, A., Jaroszynski, M., et al. 2004, OGLE 2003-BLG-235/MOA 2003-BLG-53: A Planetary Microlensing Event, ApJ, 606, L155 crossref(new window)

4.
Brown, T. M., Baliber, N., Bianco, F. B., et al. 2013, Las Cumbres Observatory Global Telescope Network, PASP, 125, 1031 crossref(new window)

5.
Gaudi, B. S. 2012, Microlensing Surveys for Exoplanets, ARAA, 50, 41 crossref(new window)

6.
Gaudi, B. S., Bennett, D. P., Udalski, A., et al. 2008, Discovery of a Jupiter/Saturn Analog with Gravitational Mi crolensing, Science, 319, 927 crossref(new window)

7.
Gaudi, B. S., Beaulieu, J.-P., Bennett, D. P., et al. 2010, The Demographics of Extrasolar Planets Beyond Snow Line with Ground-based Microlensing Surveys, Astro2010: The Astronomy and Astrophysics Decadal Survey, Science White Papers, no. 85

8.
Henderson, C. B., Gaudi, B. S., Han, C., et al. 2014, Optimal Survey Strategies and Predicted Planet Yields for the Korean Microlensing Telescope Network, ApJ, 794, 52 crossref(new window)

9.
Kaiser, N., Burgett, W., Chambers, K., et al. 2010, The Pan-STARRS Wide-Field Optical/NIR Imaging Survey, Proc. SPIE, 7733-0E

10.
Kappler, N., Kappler, L., Poteet, W. M., et al. 2012, Prototype Enclosure Design for the Korea Microlensing Telescope Network (KMTNet), Proc. SPIE, 8444-43

11.
Keller, S. C., Schmidt, B. P., Bessell, M. S., et al. 2007, The SkyMapper Telescope and The Southern Sky Survey, PASA, 24, 1 crossref(new window)

12.
Kim, S.-L., Park, B.-G., Lee, C.-U., et al. 2010, Technical Specifications of the KMTNet Observation System, Proc. SPIE, 7733-3F

13.
Kim, S.-L., Park, B.-G., Lee, C.-U., et al. 2011, Wide-Field Telescope Design for the KMTNet Project, Proc. SPIE, 8151-1B

14.
Kim, D.-J., Lee, C.-U., & Kim, S.-L. 2015, Data Transfer Test for the KMTNet Data, PKAS, 30, 31 (in Korean)

15.
Lee, C.-U., et al. 2016, JKAS, to be submitted

16.
Mao, S., & Paczynśki, B. 1991, Gravitational Microlensing by Double Stars and Planetary Systems, ApJ, 374, L37 crossref(new window)

17.
Park, B.-G., Kim, S.-L., Lee, J. W., et al. 2012, Korea Microlensing Telescope Network: Science Cases, Proc. SPIE, 8444-47

18.
Poteet, W. M., Cauthen, H. K., Kappler, N., et al. 2012, Design and Fabrication of Three 1.6-meter Telescopes for the Korea Microlensing Telescope Network (KMTNet), Proc. SPIE, 8444-5S

19.
Schneider, J., Dedieu, C., Le Sidaner, P., et al. 2011, Defining and Cataloging Exoplanets: the exoplanet.eu Database, A&A, 532, A79 crossref(new window)

20.
Skrutskie, M. F., Schneider, S. E., Stiening, R., et al. 1997, The Two Micron All Sky Survey (2MASS): Overview and Status, ASSL, 210, 25

21.
Soszyński, I, Dziembowski, W. A., Udalski, A., et al. 2011, The Optical Gravitational Lensing Experiment. The OGLE-III Catalog of Variable Stars. XI. RR Lyrae Stars in the Galactic Bulge, Acta Astron., 61, 1

22.
Sumi, T., Kamiya, K., Bennett, D. P., et al. 2011, Unbound or Distant Planetary Mass Population Detected by Gravitational Microlensing, Nature, 473, 349 crossref(new window)

23.
Tsapras, Y., Street, R., Horne, K., et al. 2009, RoboNetII: Follow-up Observations of Microlensing Events with a Robotic Network of Telescopes, AN, 330, 4

24.
Tyson, J. A. 2010, Optical Synoptic Telescopes: New Frontiers, Proc. SPIE, 7733-03

25.
Udalski, A., Szymanski, M., Stanek, K. Z., et al. 1994, The Optical Gravitational Lensing Experiment. The Optical Depth to Gravitational Microlensing in the Direction of the Galactic Bulge, Acta Astron., 44, 165

26.
Udalski, A., Szymanski, M. K., & Szymanski, G. 2015, OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment, Acta Astron., 65, 1

27.
Vucina, T., Boccas, M., Araya, C., Ah Hee, C., & Cavedoni, C. 2008, Gemini Primary Mirror In-Situ Wash, Proc. SPIE, 7012-2Q

28.
Wolszczan, A., & Frail, D. A. 1992, A Planetary System around the Millisecond Pulsar PSR1257+12, Nature, 355, 145 crossref(new window)

29.
Woźniak, P. R. 2000, Difference Image Analysis of the OGLE-II Bulge Data. I. The Method, Acta Astron., 50, 421