JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A NEW METHOD TO DETERMINE THE TEMPERATURE OF CMES USING A CORONAGRAPH FILTER SYSTEM
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A NEW METHOD TO DETERMINE THE TEMPERATURE OF CMES USING A CORONAGRAPH FILTER SYSTEM
CHO, KYUHYOUN; CHAE, JONGCHUL; LIM, EUN-KYUNG; CHO, KYUNG-SUK; BONG, SU-CHAN; YANG, HEESU;
  PDF(new window)
 Abstract
The coronagraph is an instrument that enables the investigation of faint features in the vicinity of the Sun, particularly coronal mass ejections (CMEs). So far coronagraphic observations have been mainly used to determine the geometric and kinematic parameters of CMEs. Here, we introduce a new method for the determination of CME temperature using a two filter (4025 Å and 3934 Å) coronagraph system. The thermal motion of free electrons in CMEs broadens the absorption lines in the optical spectra that are produced by the Thomson scattering of visible light originating in the photosphere, which affects the intensity ratio at two different wavelengths. Thus the CME temperature can be inferred from the intensity ratio measured by the two filter coronagraph system. We demonstrate the method by invoking the graduated cylindrical shell (GCS) model for the 3-dimensional CME density distribution and discuss its significance.
 Keywords
Sun:coronal mass ejections (CMEs);method:numerical;
 Language
English
 Cited by
 References
1.
Akmal, A., Raymond, J. C., Vourlidas, A., Thompson, B., Ciaravella, A., Ko, Y.-K., Uzzo, M., & Wu, R. 2001, SOHO Observations of a Coronal Mass Ejection, ApJ, 553, 922 crossref(new window)

2.
Allen, C. W. 1973, Allen’s Astrophysical Quantities (London: The Athlone Press University of London)

3.
Baker, D. N., Balstad, R., Bodeau, J. M., Cameron, E., Fennell, J. F., Fisher, G. M., Forbes, K. F., Kintner, P. L., Leffler, L. G., Lewis, W. S., Reagan, J. B., Small III, A. A., Stansell, T. A., Strachan Jr. L., Graham, S. J., Fisher, T. M., Swisher, V., & Gruber, C. A. 2008, Severe Space Weather Events Understanding Societal and Economic Impacts A Workshop Report (Washington DC: The National Academies Press)

4.
Baumbach, S. 1937, Strahlung, Ergiebigkeit und Elektronendichte der Sonnenkorona, Astron. Nachrichten, 263, 120 crossref(new window)

5.
Brueckner, G. E., Howard, R. A., Koomen, M. J., Korendyke, C. M., Michels, D. J., Moses, J. D., Socker, D. G., Dere, K. P., Lamy, P. L., Llebaria, A., Bout, M. V., Schwenn, R., Simnett, G. M., Bedford, D. K., & Eyles, C. J. 1995, The Large Angle Spectroscopic Coronagraph (LASCO), SoPh, 162, 357

6.
Ciaravella, A., Raymond, J. C., Thompson, B. J., van Ballegooijen, A., Strachan, L., Li, J., Gardner, L., O’Neal, R., Antonucci, E., Kohl, J., & Noci, G. 2000, Solar and Heliospheric Observatory Observations of a Helical Coronal Mass Ejection, ApJ, 529, 575 crossref(new window)

7.
Cram, L. E. 1976, Determination of the Temperature of the Solar Corona from the Spectrum of the Electron-Scattering Continuum, SoPh, 48, 3

8.
Gopalswamy, N., Akiyama, S., Yashiro, S., & Makela, P. 2010, Coronal Mass Ejections from Sunspot and NonSunspot Regions, Magnetic Coupling between the Interior and Atmosphere of the Sun, eds. S. S. Hasan & R. J. Rutten, Astrophysics and Space Science Proceedings, 289

9.
Hannah, I. G., & Kontar, E. P. 2013, Multi-Thermal Dynamics and Energetics of a Coronal Mass Ejection in the Low Solar Atmosphere, A&A, 553, A10 crossref(new window)

10.
Howard, R. A., Moses, J. D., Vourlidas, A., Newmark, J. S., Socker, D. G., Plunkett, S. P., Korendyke, C. M., Cook, J. W., Hurley, A., Davila, J. M., Thompson, W. T., St Cyr, O. C., Mentzell, E., Mehalick, K., Lemen, J. R., Wuelser, J. P., Duncan, D. W., Tarbell, T. D., Wolfson, C. J., Moore, A., Harrison, R. A., Waltham, N. R., Lang, J., Davis, C. J., Eyles, C. J., Mapson-Menard, H., Simnett, G. M., Halain, J. P., Defise, J. M., Mazy, E., Rochus, P., Mercier, R., Ravet, M. F., Delmotte, F., Auchere, F., Delaboudiniere, J. P., Bothmer, V., Deutsch, W.,Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., & Carter, T. 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI), SSRv, 136, 67

11.
Howard, R. A., Sheeley, Jr. N. R., Koomen, M. J., & Michels, D. J. 1985, Coronal Mass Ejections: 19791981, J. Geophys. Res., 90, 8173 crossref(new window)

12.
Hundhausen, A. J. 1993, Sizes and Locations of Coronal Mass Ejections: SMM Observations From 1980 and 19841989, J. Geophys. Res., 98(A8), 13 crossref(new window)

13.
Illing, R. M. E., & Hundhausen, A. J. 1985, Observation of a Coronal Transient from 1.2 to 6 Solar Radii, J. Geophys. Res., 90, 275 crossref(new window)

14.
Kurucz, R. L. 2005, New Atlases for Solar Flux, Irradiance, Central Intensity, and Limb Intensity, Memorie Della Societa Astronomica Italiana Supplement, 8, 189

15.
Lee, J.-Y., Raymond, J. C., Ko, Y.-K., & Kim, K.-S. 2009, Three-Dimensional Structure and Energy Balance of a Coronal Mass Ejection, ApJ, 692, 1271 crossref(new window)

16.
Reginald, N. L. 2001. MACS, An Instrument, and aMethodology for Simultaneous and Global Measurements of the Coronal Electron Temperature and the Solar Wind Velocity on the Solar Corona, Thesis (PhD), University of Delaware, 6516

17.
Reginald, N. L., St. Cyr, O. C., Davila, J. M., Rabin, D. M., Guhathakurta, M., & Hassler, D. M. 2009, Electron-Temperature Maps of the Low Solar Corona: ISCORE Results from the Total Solar Eclipse of 29 March 2006 in Libya, SoPh, 260, 347

18.
Reginald, N. L., & Davila, J. M. 2000, MACS for Global Measurement of the SolarWind Velocity and the Thermal Electron Temperature during the Total Solar Eclipse on 11 August 1999, SoPh, 195, 111

19.
St. Cyr, O. C., Plunkett, S. P., Michels, D. J., Paswaters, S. E., Koomen, M. J., Simnett, G. M., Thompson, B. J., Gurman, J. B., Schwenn, R., Webb, D. F., Hildner, E., & Lamy, P. L. 2000, Properties of Coronal Mass Ejections: SOHO LASCO Observations from January 1996 to June 1998, J. Geophys. Res., 105(A8), 18 crossref(new window)

20.
Thernisien, A. 2010, Implementation of the Graduated Cylindrical Shell Model for the Three-Dimensional Reconstruction of Coronal Mass Ejections, ApJS, 194, 33 crossref(new window)

21.
Thernisien, A. F. R., Howard, R. A., & Vourlidas, A. 2006, Modeling of Flux Rope Coronal Mass Ejections, ApJ, 652, 763 crossref(new window)

22.
Tousey, R. 1973, "The solar corona", in Space Research XIII, Proceedings of Open Meetings of Working Groups on Physical Sciences of the 15th Plenary Meeting of COSPAR, Madrid, Spain, 10 24 May, 1972, Eds. Rycroft, M. J., & Runcorn, S. K. (Berlin: Akademie-Verlag), 713

23.
Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O. C., Plunkett, S. P., Rich, N. B., & Howard, R. A. 2004, A Catalog of White Light Coronal Mass Ejections Observed by the SOHO Spacecraft, J. Geophys. Res., 109, A07105 crossref(new window)