JOURNAL BROWSE
Search
Advanced SearchSearch Tips
AUGMENTING WFIRST MICROLENSING WITH A GROUND-BASED TELESCOPE NETWORK
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
AUGMENTING WFIRST MICROLENSING WITH A GROUND-BASED TELESCOPE NETWORK
ZHU, WEI; GOULD, ANDREW;
  PDF(new window)
 Abstract
Augmenting the Wide Field Infrared Survey Telescope (WFIRST) microlensing campaigns with intensive observations from a ground-based network of wide-field survey telescopes would have several major advantages. First, it would enable full two-dimensional (2-D) vector microlens parallax measurements for a substantial fraction of low-mass lenses as well as planetary and binary events that show caustic crossing features. For a significant fraction of the free-floating planet (FFP) events and all caustic-crossing planetary/binary events, these 2-D parallax measurements directly lead to complete solutions (mass, distance, transverse velocity) of the lens object (or lens system). For even more events, the complementary ground-based observations will yield 1-D parallax measurements. Together with the 1-D parallaxes from WFIRST alone, they can probe the entire mass range M ≳ M. For luminous lenses, such 1-D parallax measurements can be promoted to complete solutions (mass, distance, transverse velocity) by high-resolution imaging. This would provide crucial information not only about the hosts of planets and other lenses, but also enable a much more precise Galactic model. Other benefits of such a survey include improved understanding of binaries (particularly with low mass primaries), and sensitivity to distant ice-giant and gas-giant companions of WFIRST lenses that cannot be detected by WFIRST itself due to its restricted observing windows. Existing ground-based microlensing surveys can be employed if WFIRST is pointed at lower-extinction fields than is currently envisaged. This would come at some cost to the event rate. Therefore the benefits of improved characterization of lenses must be weighed against these costs.
 Keywords
astrometry;gravitational microlensing;planets;stars;fundamental parameters (mass);
 Language
English
 Cited by
 References
1.
Alcock, C., Allsman, R. A., Alves, D. R., et al. 2001, Direct Detection of a Microlens in the Milky Way, Nature, 414, 617 crossref(new window)

2.
An, J. H., & Gould, A. 2001, Microlens Mass Measurement Using Triple Peak Events, ApJ, 563, 111 crossref(new window)

3.
Batista, V., Beaulieu, J.-P., Bennett, D. P., et al. 2015, Confirmation of the OGLE-2005-BLG-169 Planet Signature and Its Characteristics with Lens-Source Proper Motion Detection, ApJ, 808, 170 crossref(new window)

4.
Bennett, D. P., Anderson, J., & Gaudi, B. S. 2007, Characterization of Gravitational Microlensing Planetary Host Stars, ApJ, 660, 781 crossref(new window)

5.
Bennett, D. P., Bhattacharya, A., Anderson, J., et al. 2015, Confirmation of the Planetary Microlensing Signal and Star and Planet Mass Determinations for Event OGLE-2005-BLG-169, ApJ, 808, 169 crossref(new window)

6.
Bessell, M. S., & Brett, J. M. 1988, JHKLM Photometry - Standard Systems, Passbands, and Intrinsic Colors, PASP, 100, 1134 crossref(new window)

7.
Boutreux, T., & Gould, A. 1996, Monte Carlo Simulations of MACHO Parallaxes from a Satellite, ApJ, 462, 705 crossref(new window)

8.
Boyajian, T. S., van Belle, G., & von Braun, K. 2014, Stellar Diameters and Temperatures. IV. Predicting Stellar Angular Diameters, AJ, 147, 47 crossref(new window)

9.
Calchi Novati, S., Gould, A., Yee, J. C., et al. 2015, Spitzer IRAC Photometry for Time Series in Crowded Fields, ApJ, 814, 92 crossref(new window)

10.
Calchi Novati, S., & Scarpetta, G. 2015, Microlensing Parallax for Observers in Heliocentric Motion, arXiv:1512.09141

11.
Dong, S., Udalski, A., Gould, A., et al. 2007, First Space-Based Microlens Parallax Measurement: Spitzer Observations of OGLE-2005-SMC-001, ApJ, 664, 862 crossref(new window)

12.
Gaudi, B. S., & Gould, A. 1997, Satellite Parallaxes of Lensing Events toward the Galactic Bulge, ApJ, 477, 152 crossref(new window)

13.
Ghosh, H., DePoy, D. L., Gal-Yam, A., et al. 2004, Potential Direct Single-Star Mass Measurement, ApJ, 615, 450 crossref(new window)

14.
Gonzalez, O. A., Rejkuba, M., Zoccali, M., et al. 2012, Reddening and Metallicity Maps of the Milky Way Bulge from VVV and 2MASS. II. The Complete High Resolution Extinction Map and Implications for Galactic Bulge Studies, A&A, 543, A13 crossref(new window)

15.
Gould, A. 1992, Extending the MACHO Search to about 10 exp 6 Solar Masses, ApJ, 392, 442 crossref(new window)

16.
Gould, A. 1994, Proper Motions of MACHOs, ApJL, 421, L71 crossref(new window)

17.
Gould, A. 1994, MACHO Velocities from Satellite-Based Parallaxes, ApJL, 421, L75 crossref(new window)

18.
Gould, A., Miralda-Escude, J., & Bahcall, J. N. 1994, Microlensing Events: Thin Disk, Thick Disk, or Halo?, ApJL, 423, L105 crossref(new window)

19.
Gould, A. 1995a, Analytic Error Estimates, ApJ, 440, 510 crossref(new window)

20.
Gould, A. 1995b, MACHO Parallaxes from a Single Satellite, ApJL, 441, L21 crossref(new window)

21.
Gould, A. 1996, Theory of Pixel Lensing, ApJ, 470, 201 crossref(new window)

22.
Gould, A. 1997, Extreme Microlensing toward the Galactic Bulge, ApJ, 480, 188 crossref(new window)

23.
Gould, A. 2000, Measuring the Remnant Mass Function of the Galactic Bulge, ApJ, 535, 928 crossref(new window)

24.
Gould, A. 2013, Geosynchronous Microlens Parallaxes, ApJL, 763, L35 crossref(new window)

25.
Gould, A. 2014, Microlens Masses from 1-D Parallaxes and Heliocentric Proper Motions, JKAS, 47, 215

26.
Gould, A. 2014, WFIRST Ultra-Precise Astrometry I: Kuiper Belt Objects, JKAS, 47, 279

27.
Gould, A., Huber, D., Penny, M., & Stello, D. 2015, WFIRST Ultra-Precise Astrometry II: Asteroseismology, JKAS, 48, 93

28.
Gould, A., & Yee, J. C. 2013, Microlens Terrestrial Parallax Mass Measurements: A Rare Probe of Isolated Brown Dwarfs and Free-Floating Planets, ApJ, 764, 107 crossref(new window)

29.
Gould, A., & Yee, J. C. 2014 Microlens Masses from Astrometry and Parallax in Space-based Surveys: From Planets to Black Holes, ApJ, 784, 64 crossref(new window)

30.
Gould, A., Gaudi, B. S., & Han, C. 2003, Resolving the Microlens Mass Degeneracy for Earth-Mass Planets, ApJL, 591, L53 crossref(new window)

31.
Graff, D. S., & Gould, A. 2002, Microlens Parallaxes of Binary Lenses Measured from a Satellite, ApJ, 560, 253 crossref(new window)

32.
Han, C., & Gould, A. 1995, The Mass Spectrum of MACHOs from Parallax Measurements, ApJ, 449, 521 crossref(new window)

33.
Han, C., & Gould, A. 2003, Stellar Contribution to the Galactic Bulge Microlensing Optical Depth, ApJ, 592, 172 crossref(new window)

34.
Han, C., Chung, S.-J., Kim, D., et al. 2004, Gravitational Microlensing: A Tool for Detecting and Characterizing Free-Floating Planets, ApJ, 604, 372 crossref(new window)

35.
Hardy, S. J., & Walker, M. A. 1995, Parallax Effects in Binary Microlensing Events, MNRAS, 276, L79

36.
Henderson, C. B., Gaudi, B. S., Han, C., et al. 2014, Optimal Survey Strategies and Predicted Planet Yields for the Korean Microlensing Telescope Network, ApJ, 794, 52 crossref(new window)

37.
Henderson, C. B. 2015, Prospects for Characterizing Host Stars of the Planetary System Detections Predicted for the Korean Microlensing Telescope Network, ApJ, 800, 58 crossref(new window)

38.
Henderson, C. B., Penny, M., Street, R. A., et al. 2015, Campaign 9 of the K2 Mission: Observational Parameters, Scientific Drivers, and Community Involvement for a Simultaneous Space- and Ground-Based Microlensing Survey, arXiv:1512.09142

39.
Holtzman, J. A., Watson, A. M., Baum, W. A., et al. 1998, The Luminosity Function and Initial Mass Function in the Galactic Bulge, AJ, 115, 1946 crossref(new window)

40.
Hotz, D. E., & Wald, R. M. 1996, Photon Statistics Limits for Earth-based Parallax Measurements of MACHO Events, ApJ, 471, 64 crossref(new window)

41.
Kim, S.-L., Lee, C.-U., Park, B.-G., et al. 2016, KMTNet: A Network of 1.6 m Wide-Field Optical Telescopes Installed at Three Southern Observatories, JKAS, accepted

42.
Nataf, D. M., Gould, A., Fouqué, P., et al. 2013, Reddening and Extinction toward the Galactic Bulge from OGLE-Telescope Assets WFIRST-AFTA 2015 Report, arXiv:1503.03757

43.
Sumi, T., Kamiya, K., & Bennett, D. P. 2011, Unbound or Distant Planetary Mass Population Detected by Gravitational Microlensing, Nature, 473, 349 crossref(new window)

44.
Yee, J. C. 2013, WFIRST Planet Masses from Microlens Parallax, ApJL, 770, 31 crossref(new window)

45.
Yoo, J., DePoy, D. L., Gal-Yam, A., et al. 2004, OGLE-2003-BLG-262: Finite-Source Effects from a Point-Mass Lens, ApJ, 603, 139 crossref(new window)

46.
Zhu, W., Penny, M., Mao, S., Gould, A., & Gendron, R. 2014, Predictions for Microlensing Planetary Events from Core Accretion Theory, ApJ, 788, 73 crossref(new window)

47.
Zhu, W., Udalski, A., & Gould, A. 2015, Spitzer as Microlens Parallax Satellite: Mass and Distance Measurements of Binary Lens System OGLE-2014-BLG-1050L, ApJ, 805, 8 crossref(new window)

48.
Zhu, W., Calchi Novati, S., Gould, A., et al. 2016, Mass Measurements of Isolated Objects from Space-Based Microlensing, ApJ, in press (arXiv:1510.02097) III: The Inner Milky Way’s RV ∼ 2.5 Extinction Curve, ApJ, 769, 88

49.
Penny, M. T., Kerins, E., Rattenbury, N., et al. 2013, ExELS: an Exoplanet Legacy Science Proposal for the ESA Euclid Mission - I. Cold Exoplanets, MNRAS, 434, 2 crossref(new window)

50.
Poindexter, S., Afonso, C., Bennett, D. P., et al. 2005, Systematic Analysis of 22 Microlensing Parallax Candidates, ApJ, 633, 914 crossref(new window)

51.
Raghavan, D., McAlister, H. A., Henry, T. J., et al. 2010, A Survey of Stellar Families: Multiplicity of Solar-Type Stars, ApJS, 190, 1 crossref(new window)

52.
Refsdal, S. 1966, On the Possibility of Determining the Distances and Masses of Stars from the Gravitational Lens Effect, MNRAS, 134, 315 crossref(new window)

53.
Shvartzvald, Y., Udalski, A., Gould, A., et al. 2015, Spitzer Microlens Measurement of a Massive Remnant in a Well-Separated Binary, ApJ, 814, 111 crossref(new window)

54.
Smith, M., Mao, S., & Paczyński, B. 2003, Acceleration and Parallax Effects in Gravitational Microlensing, MNRAS, 339, 925 crossref(new window)

55.
Spergel, D., Gehrels, N., Baltay, C., et al. 2015, Wide-Field Infrared Survey Telescope-Astrophysics Focused