JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Method for Measuring the Difficulty of Music Scores
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Method for Measuring the Difficulty of Music Scores
Song, Yang-Eui; Lee, Yong Kyu;
  PDF(new window)
 Abstract
While the difficulty of the music can be classified by a variety of standard, conventional methods are classified by the subjective judgment based on the experience of many musicians or conductors. Music score is difficult to evaluate as there is no quantitative criterion to determine the degree of difficulty. In this paper, we propose a new classification method for determining the degree of difficulty of the music. In order to determine the degree of difficulty, we convert the score, which is expressed as a traditional music score, into electronic music sheet. Moreover, we calculate information about the elements needed to play sheet music by distance of notes, tempo, and quantifying the ease of interpretation. Calculating a degree of difficulty of the entire music via the numerical data, we suggest the difficulty evaluation of the score, and show the difficulty of music through experiments.
 Keywords
Difficulty Measurement;Classification;Computer Music;Sheet Music Analysis;Musical Score;Music Information Retrieval;e-Learning;
 Language
Korean
 Cited by
 References
1.
Su Mi Kwon and Wan Kyu Chung, "A comparative study of music grading system operated by ABRSM, NYSSMA and the national association of private music institutions in South Korea.", Vol. 43, No. 4, pp. 25-55, Korean Journal of Research in Music Education, 2014.

2.
Dan ha Kim, "A Search for Improving the Korea Piano Level Evaluation System through Comparisons of Piano Evaluation Criteria of England, Canada and China", Ph. D. Dissertation, Hansei University, 2014.

3.
Sheet Music Plus, SMP Level Guidelines, http://www.sheetmusicplus.com/help/level-guidelines

4.
ABRSM, Exam Information & Regulations 2015, http://www.abrsm.org

5.
NYSSMA, MYSSMA Manual, https://www.nyssma.org

6.
McKinney, Martin F., and Jeroen Breebaart. "Features for audio and music classification." ISMIR. Vol. 3. 2003.

7.
Basili, Roberto, Alfredo Serafini, and Armando Stellato. "Classification of musical genre: a machine learning approach." ISMIR. 2004.

8.
N. Scaringella, G. Zoia and D. Mlynek, "Automatic genre classification of music content: a survey," in IEEE Signal Processing Magazine, vol. 23, no. 2, pp. 133-141, March 2006.

9.
K. Yoon, J. Lee and M. U. Kim, "Music recommendation system using emotion triggering low-level features," in IEEE Transactions on Consumer Electronics, vol. 58, no. 2, pp. 612-618, May 2012.

10.
Sebastien, Veronique, et al. "Score Analyzer: Automatically Determining Scores Difficulty Level for Instrumental e-Learning." ISMIR. 2012.

11.
Najeeb Ullah Khan and Jung-Chul Lee, "Development of a Music Score Editor based on MusicXML", Journal of the Korea Society of Computer and Information, Vol. 19, No. 2, pp. 77-90, Feb. 2014.

12.
Good, Michael. "MusicXML: An internet-friendly format for sheet music." XML Conference and Expo. 2001.

13.
MusicXML Specification, http://www.musicxml.com