Advanced SearchSearch Tips
Effects of Pressure Assisted Mild Thermal Treatment on Inactivation of Escherichia coli ATCC 10536 in Milk Suspension
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of Pressure Assisted Mild Thermal Treatment on Inactivation of Escherichia coli ATCC 10536 in Milk Suspension
Park, S.H.; Hong, G.P.; Min, S.G.; Choi, M.J.;
  PDF(new window)
In this study, the influence of pressure assisted mild thermal inactivation (PAMTI) on E. coli ATCC 10536 was examined at 200 MPa and temperature range of . Inactivation rate significantly increased (p<0.05) as temperature and time increased at 200 MPa. The maximum inactivation (7.91 log reduction) was obtained at for 30 min under 200 MPa, which meant the complete inactivation of E. coli ATCC 10536. Inactivation kinetics were evaluated with the first order inactivation rate (k), activation energy (), thermal death time (TDT), and z value. Kinetic parameters were significantly (p<0.05) influenced by variation temperature of PAMTI. In this study, the synergistic effect of pressure and temperature were found in the inactivation of E. coli ATCC 10536 through PAMTI.
high pressure;inactivation;kinetic;Escherichia coli;milk;
 Cited by
Ahn, J., Balasubramaniam, V. M., and Yousef, A .E. (2007). Inactivation kinetics of selected aerobic and anaerobic bacterial spores by pressure-assisted thermal processing. Int. J. Food Microbiol. 113, 321-329 crossref(new window)

Alpas, H., Kalchayanand, N., Bozoglu, F., Sikes, A., Dunne, C. P., and Ray, B. (1999). Variation in resistance to hydrostatic pressure among strains of food-borne pathogens. Appl. Environ. Microbiol. 65, 4248-4251

Antonio Torres, J. and Velazquez, G. (2005). Commercial opportunities and research challenges in the high pressure processing of foods. J. Food Eng. 67, 95-112 crossref(new window)

Balasubramanian, S. and Balasubramaniam, V.M. (2003). Compression heating influence of pressure transmitting fluids on bacteria inactivation during high pressure processing. Food Res. Int. 36, 661-668 crossref(new window)

Balasubramaniam, V. M., Ting, E. Y., Stewart, C. M., and Robbins, J. A. (2004). Recommended laboratory practices for conducting high-pressure microbial inactivation experiments. Innov. Food Sci. Emerg. Technol. 5, 299-306 crossref(new window)

Bartlett, D. H. (1992). Microbial life at high pressures. Sci. Prog. 76, 479-496

Benito, A., Ventoura, G., Casadei, M., Robinson, T., and Mackey, B. (1999). Variation in resistance of natural isolates of Escherichia coli O157 to high hydrostatic pressure, mild heat, and other stresses. Appl. Environ. Microbiol. 65, 1564-1569

Cheftel, J. C. (1995). Hautes pressions, inactivation microbienne et conservation des aliments. Comptes Rendus de l'Academie d'Agriculture de France. 81, 13-38

Chen, C. and Tseng, C. W. (1997). Effect of high hydrostatic pressure on the temperature dependence of Saccharomyces cerevisiae and Zygosaccharomyces rouxii. Process Biochem. 32, 337-343 crossref(new window)

Chen, H. and Hoover, D. G. (2003). Modeling the combined effect of high hydrostatic pressure and mild heat on the inactivation kinetics of Listeria monocytogenes Scott A in whole milk. Innov. Food Sci. Emerg. Technol. 4, 25-34 crossref(new window)

Corwin, H. and Shellhammer, T. H. (2002). Combined carbon dioxide and high pressure inactivation of pectin methylesterase, polyphenol oxidase, Lactobacillus plantarum and Escherichia coli. J. Food Sci. 67, 697-701 crossref(new window)

de Heij, W. B. C., van Schepdael, L. J. M. M., Moezelaar, R., Hoogland, H., Matser, A. M., and van den Berg, R. W. (2003). High-pressure sterilization: maximizing the benefits of adiabatic heating. Food Technol. 57, 37-41

Deliza, R., Rosenthal, A., Abadio, F. B. D., Silva, C. H. O., and Castillo, C. (2005). Application of high pressure technology in the fruit juice processing: benefits perceived by consumers. J. Food Eng., 67, 241-246 crossref(new window)

Erkmen, O. and Dooan, C. (2004a). Kinetic analysis of Escherichia coli inactivation by high hydrostatic pressure in broth and foods. Food Microbiol. 21, 181-185 crossref(new window)

Erkmen, O. and Dogan, C. (2004b). Effects of ultra high hydrostatic pressure on Listeria monocytogenes and natural flora in broth, milk and fruit juices. Int. J. Food Sci. and Technol. 39, 91-97 crossref(new window)

Erkmen, O. and Karatas, S. (1997). Effect of high hydrostatic pressure on Staphylococcus aureus in milk. J. Food Eng. 33, 257-262 crossref(new window)

Gao, Y. L., Ju, X. R., and Jiang, H. H. (2006a). Studies on inactivation of Bacillus subtilis spores by high hydrostatic pressure and heat using design of experiments. J. Food Eng. 77, 672-679 crossref(new window)

Guan, D., Chen, H., Ting, E. Y., and Hoover, D. G. (2006). Inactivation of Staphylococcus aureus and Escherichia coli O157:H7 under isothermal-endpoint pressure conditions. J. Food Eng. 77, 620-627 crossref(new window)

Hashizume, C., Kimura, K., and Hayashi, R. (1995). Kinetic analysis of yeast inactivation by high pressure treatment at low temperatures. Biosci. Biotechnol. Biochem. 59, 1455- 1458 crossref(new window)

Hong, G. P., Park, S. H., Kim, J. Y., Lee, S. K., and Min, S. G. (2005). Effects of time-dependent high pressure treatment on physico-chemical properties of pork. Food Sci. Biotechnol. 14, 808-812

Hugas, M., Garriga, M., and Monfort, J. M. (2002). New mild technologies in meat processing: high pressure as a model technology. Meat Science. 62, 359-371 crossref(new window)

Huppertz, T., Kelly, A. L., and Fox, P. F. (2002). Effects of high pressure on constituents and properties of milk. Int. Dairy J. 12, 561-572 crossref(new window)

Kalchayanand, N., Sikes, A., Dunne, C. P., and Ray, B. (1998a). Factors influencing death and injury of foodborne pathogens by hydrostatic pressure pasteurization. Food Microbiol. 15, 207-214 crossref(new window)

Kalchayanand, N., Sikes, A., Dunne, C. P., and Ray, B. (1998b). Interaction of hydrostatic pressure, time and temperature of pressurization and pediocin AcH on inactivation of foodborne bacteria. J. Food Prot. 61, 425-431 crossref(new window)

Kilimann, K. V., Hartmann, C., Vogel, R. F., and Gänzle, M. G. (2005). Differential inactivation of glucose- and glutamate dependent acid resistance of Escherichia coli TMW 2.497 by high-pressure treatments. Sys. Appl. Microbiol. 28, 663-671 crossref(new window)

Krebbers, B., Matser, A. M., Hoogerwerf, S. W., Moezelaar, R., Tomassen, M. M. M., and van den Berg, R. W. (2003). Combined high-pressure and thermal treatments for processing of tomato puree: evaluation of microbial inactivation and quality parameters. Innov. Food Sci. Emerg. Technol. 4, 377-385 crossref(new window)

Ludikhuyze, L., Van Loey, A., Indrawati, Denys, S., and Hendrickx, M. (2002). Effects of high pressure on enzymes related to food quality. In: Ultra High Pressure Treatments (edited by M. Hendrickx and D. Knorr). Kluwer Academic/Plenum Publishers, USA, New York, pp. 115-160

Ludwig, H., Bieler, C., Hallbauer. K., and Scigalla, W. (1992). Inactivation of microorganisms by high hydrostatic pressure. In: High Pressure and Biotechnology (edited by C. Balny, R. Hayashi, K. Heremans, P., and Masson). Colloque INSERM/ John Libbey Eurotex, UK, London, pp. 25-32

Mackey, B. M., Forestiere, K., and Isaacs, N. (1995). Factors Affecting the resistance of Listeria monocytogenes to high hydrostatic pressure. Food Biotechnol. 9, 1-11 crossref(new window)

Mallidis, C., Galiatsatou, P., Taoukis, P. S., and Tassou, C. (2003). The kinetic evaluation of the use of high hydrostatic pressure to destroy Lactobacillus plantarum and Lactobacillus brevis. Int. J. Food Sci. Technol. 38, 579-585 crossref(new window)

Matser, A. M., Krebbers, B., van den Berg, R. W., and Bartels, P. V. (2004). Advantages of high pressure sterilisation on quality of food products. Trends Food Sci. Technol. 15, 79-85 crossref(new window)

Metrick, C., Hoover, D. G., and Farkas, D. F. (1989). Effects of high hydrostatic pressure on heat resistant and heat sensitive strains of Salmonella. J. Food Sci. 54, 1547-1549 crossref(new window)

Metwalli, A. M., de Jongh, H. H., and van Boekel, M. A. J. S. (1998). Heat inactivation of bovine plasmin. Int. Dairy J. 8, 47-56 crossref(new window)

Meyer, R. S., Cooper, K .L., Knorr, D., and Lelieveld, H. L. M. (2000). High pressure sterilization of foods. Food Technol. 54, 67-72

O´Reilly, C. E., Kelly, A. L., Murphy, P. M., and Beresford, T. P. (2001). High pressure treatment: applications in cheese manufacture and ripening. Trends Food Sci. Technol. 12, 51-59 crossref(new window)

Park, S. H., Ryu, H. S., Hong, G. P., and Min, S. G. (2006). Physical properties of frozen pork thawed by high pressure assisted thawing process. Food Sci. Technol. Int. 12, 347-352 crossref(new window)

Patterson, M. F. and Kilpatrick, D. J. (1998). The combined effect of high hydrostatic pressure and mild heat on inactivation of pathogens in milk and poultry. J. Food Prot. 61, 432-436 crossref(new window)

Patterson, M. F., Quinn, M., Simpson, R., and Gilmore, A. (1995). Sensitivity of vegetative pathogens to high hydrostatic pressure treatment in phosphate buffered saline and foods. J. Food Prot. 58, 524-529 crossref(new window)

Polydera, A. C., Stoforos, N. G., and Taoukis, P. S. (2004). The effect of storage on the antioxidant activity of reconstituted orange juice which had been pasteurized by high pressure or heat. Int. J. Food Sci. Technol. 39, 783-791 crossref(new window)

Rajan, S., Pandrangi, S., Balasubramaniam, V. M., and Yousef, A. E. (2006). Inactivation of Bacillus stearothermophilus spores in egg patties by pressure-assisted thermal processing. Lebens. Wiss. Technol. 39, 844-851 crossref(new window)

Sale, A. J. H., Gould, G. W., and Hamilton, W. A. (1970). Inactivation of bacterial spores by hydrostatic pressure. J. Gen. Microbiol. 60, 323-334 crossref(new window)

San Martin, M. F., Barbosa-Canovas, G. V., and Swanson, B.G. (2002). Food processing by high hydrostatic pressure. Crit. Rev. Food Sci. Nutr. 42, 627-645 crossref(new window)

Smelt, J. P. P. M. (1998). Recent advances in the microbiology of high pressure processing. Trends Food Sci. Technol. 9, 152-158 crossref(new window)

Styles, M. F., Hoover, D. G., and Farkas, D. F. (1991). Response of Listeria monocytogenes and Vibrio parahaemolyticus to high hydrostatic pressure. J. Food Sci. 56, 1404-1407 crossref(new window)

Tang, J. and Sokhansanj, S. (1993). Drying parameter effects on lentil seed viability. Tran. Am. Soc. Agric. Eng. 36, 855- 861 crossref(new window)

Tang, J., Ikediala, J. N., Wang, S., Hansen, J. D., and Cavalieri, R. P. (2000). High-temperature-short-time thermal quarantine methods. Postharvest Biol. Technol. 21, 129-145 crossref(new window)

Ting, E., Balasubramaniam, V. M., and Raghubeer, E. (2002). Determining thermal effects in high pressure processing. Food Technol. 56, 31-35

Trujillo, A. J., Capellas, M., Saldo, J., Gervilla, R., and Guamis, B. (2002). Application of high-hydrostatic pressure on milk and dairy products: a review. Innov. Food Sci. Emerg.Technol. 3, 295-307 crossref(new window)

Van Opstal, I., Vanmuysen, S.C.M., Wuytack, E.Y., Masschalck, B., and Michiels, C.W. (2005). Inactivation of Escherichia coli by high hydrostatic pressure at different temperatures in buffer and carrot juice. Int. J. Food Microbiol. 98, 179-191 crossref(new window)

Wang, S., Ikediala J. M., Tang, J., and Hansen, J. D. (2002). Thermal death kinetics and heating rate effects for fifthinstar Cydia pomonella (L.) (Lepidoptera: Tortricidae). J. Stored Prod. Res. 38, 441-453 crossref(new window)

Weemaes, C., Ooms, V., Indrawati, Ludikhuyze, L., Van den Broeck, I., Van Loey, A., and Hendrickx, M. (1999). Pressure- temperature degradation of green color in broccoli juice. J. Food Sci. 64, 504-508 crossref(new window)