Advanced SearchSearch Tips
Growth Characteristics and Physiological Properties in Milk of Lactobacillus casei CU2604 Isolated from Adult Feces
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Growth Characteristics and Physiological Properties in Milk of Lactobacillus casei CU2604 Isolated from Adult Feces
Kim, Hee-Jin; Choi, Jae-Kyoung; Lee, Kyung-Min; Im, Jung-Hyun; Eom, Seok-Jin; Kim, Geun-Bae;
  PDF(new window)
As a trial for the development of a new starter culture for yogurt products, more than two hundred lactic acid bacteria strains were isolated from raw milk and healthy human feces. The strains that showed excellent growth and acid production ability in the 10% skim milk media were selected and identified as Lactobacillus casei through the API carbohydrate fermentation pattern and 16S rDNA sequence analysis. L. casei CU2604 was further investigated for its physiological characteristics as a starter culture compared with a commercial strain. The CU2604 strain showed good acid production and growth characteristics in milk, which were comparable to those of the L. casei Shirota strain. Despite the fact that both these strains displayed the same sugar fermenting pattern and PFGE band pattern, and had similar growth characteristic in milk, L. casei CU2604 exhibited different fatty acid composition in the cell wall, showed more tolerance to bile and to pH, and presented better growth inhibition activity against pathogenic bacteria. Based on these results, the L. casei CU2604 strain holds great promise for use as a novel and efficient starter culture in the production of yogurt. Additional studies on the probiotic characteristics of this strain are currently being conducted.
Lactobacillus casei;yogurt starter;probiotics;PFGE;fatty acid composition;
 Cited by
Aso, Y., Akaza H., Kotake T., Tsukamoto T., Imai K., and Naito S. (1995) Preventive effect of a Lactobacillus casei preparation on the recurrence of superficial bladder cancer in a double-blind trial. Eur. J. Urol. 27, 104-109 crossref(new window)

Bjorkroth, J., Ridell, J., and Korkeala H. (1996) Characterization of Lactobacillus sake strains associating with production of ropy slime by randomly amplified polymorphic DNA (RAPD) and pulsed-field gel electrophoresis (PFGE) patterns. Int. J. Food Microbiol. 31, 59-68 crossref(new window)

Briczinski, E. P. and Roberts, R. F. (2006) A rapid pulsedfield gel electrophoresis method for analysis of Bifidobacteria. J. Dairy Sci. 89, 2424-2427 crossref(new window)

Cebra, J. J. (1999) Influences of microbiota on intestinal immune system development. Am. J. Clin. Nutr. 69, 1046- 1051 crossref(new window)

Cho, J. K., Li, G. H., Cho, S. J., Yoon, Y. C., Hwang, S. G., Heo, K. C., and Choe, I. S. (2007) The identification and physiological properties of Lactobacillus plantarum JK-01 isolated from Kimchi. Kor. J. Food Sci. Ani. Resour. 27, 363-370 crossref(new window)

Ferrero, M., Cesena, C., Morelli, L., Scolari, G., and Vescovo, M. (1996) Molecular characterization of Lactobacillus casei strains. FEMS Mirobiol. Lett. 140, 215-219 crossref(new window)

Fuller, R. (1989) Probiotic in man and animals. A review. J. Appl. Bacteriol. 66, 365-378 crossref(new window)

Fuller, R. and Gibson, G. R. (1997) Modification of the intestinal flora using probiotics and prebiotics. Scandi. J. Gastroenterol. 32 (Suppl. 222), 28-31

Gilliland, S. E. (1979) Beneficial interrelationships between certain microorganisms and humans: candidate microorganisms for use as dietary adjuncts. J. Food Prot. 42, 164-167 crossref(new window)

Gilliland, S. E. and Walker, D. K. (1990) Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in humans. J. Dairy Sci. 73, 905-911 crossref(new window)

Havenaar, R. and Spanhaak, S. (1994) Probiotics from an immunological point of view. Curr. Opin. Biotechnol. 5, 320-325 crossref(new window)

Heenan, C. M., Adams, M. C., Hosken, R. W., and Fleet, G. H. (2004) Survival and sensory acceptability of probiotic microorganisms in a nonfermented frozen vegetarian dessert. Lebensmittel Wissenschaft und technol. 37, 461-466 crossref(new window)

Hyronimus, B., Le Marrec, C., Sassi, H., and Deschamps, A. (2000) Acid and bile tolerance of spore-forming lactic acid bacteria. Int. J. Food. Microbiol. 61, 193-197 crossref(new window)

Kaila, M., Isolauri, E., Soppi, E., Virtanen, E., Laine, S., and Arvilommi, H. (1992) Enhancement of the circulating antibody secreting cell response in human diarrhoea by a human Lactobacillus strain. Pediatr. Res. 32, 141-144 crossref(new window)

Lim, S. D., Kim, K. S., and Do, J. R. (2008) Physiological characteristics and ACE inhibitory activity of Lactobacillus zeae RMK354 isolated from raw milk. Kor. J. Food Sci. Ani. Resour. 28, 587-595 crossref(new window)

Lim, S. D., Kim, K. S., and Do, J. R. (2009) Physiological characteristics and GABA production of Lactobacillus acidophilus RMK567 isolated from raw milk. Kor. J. Food Sci. Ani. Resour. 29, 15-23 crossref(new window)

Marteau, P., Pochart, P., Bouhnik, Y., and Rambaud, J. C. (1993) The fate and effect of transiting nonpathogenic microorganisms in the human intestine. In Intestinal Flora, Immunity, Nutrition and Health, ed. AP Simopoulos, T Corning and A R$\'{e}$rat. World Rev. Nutr. Diet. 74, 1-21

Martini, M. C., Bolweg, G. L., Levitt, M. D., and Savaiano, D. A. (1987) Lactose digestion by yoghurt $\beta$-galactosidase : Influence of pH and microbial cell integrity. Am. J. Clin. Nutr. 45, 432-437 crossref(new window)

Miller, L. T. (1982) Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acid. J. Clin. Microbiol. 18, 861-867

Mishra, V. and Prasad, D. N. (2005) Application of in vitro methods for selection of Lactobacillus casei strains as potential probiotics. Int. J. Food. Microbiol. 103, 109-115 crossref(new window)

Nagao, F., Nakayama, M., Muto, T., and Okumura, K. (2000) Effects of a fermented milk drink containing Lactobacillus casei strain Shirota on the immune system in healthy human subjects. Biosci. Biotechnol. Biochem. 64, 2706-2708 crossref(new window)

Park, J. G., Song, W. H., Hong, S. M., and Kim, C. H. (2008) Production of conjugated linoleic acid by Lactobacillus acidophilus isolated from breast-fed infants. Kor. J. Food Sci. Ani. Resour. 28, 580-586 crossref(new window)

Park, S. Y., Ko, Y. T., Jeong, H. K., Yang, J. O., Chung, H. S., Kim, Y. B., and Ji, G. E. (1996) Effect of various lactic acid bacteria on the serum cholesterol levels in rats and resistance to acid, bile and antibiotics. Kor. J. Appl. Microbiol. Biotechnol. 24, 304-310

Perdigon, G., Nader de Marcias, M. E., Alvarez, S., Oliver, G., and Pesce deRuiz Holgado A. A. (1990) Prevention of gastrointestinal infection using immunobiological methods with fermented milk with Lactobacillus casei and Lactobacillus acidophilus. J. Dairy Res. 57, 255-264 crossref(new window)

Roussel, Y., Colmin, C., Simonet, J. M., and Decaris, B. (1993) Strain characterization, genome size and plasmid content in the Lactobacillus acidophilus group (Hansen and Mocquot). J. Appl. Bacteriol. 74, 549-556

Salminen S., Isolauri E., and Salminen E. (1996) Clinical uses of probiotics for stabilizing the gut mucosal barrier: successful strains and future challenges. Antonie van Leeuwenhoek 70, 347-358 crossref(new window)

Sanders, M. E. (1993) Effect of consumption of lactic cultures on human health. In: Advances in Food and Nutrition Research (edited by J. Kinsella), San Diego, CA, USA: Academic Press. pp. 67-130

Sanders, M. E. (1995) Lactic acid bacteria as promoters of human health. In Functional Foods: Designer Foods, Pharmafoods, Nutraceuticals, ed. I. Goldberg, London: Chapman and Hall. pp. 294-322

SAS (1996) SAS/STAT User's Guide. Release 6.12, SAS Institute Inc., Cary, NC, USA

Saxelin, M., Tynkkynen, S., Mattila-Sandholm, T., and de Vos, W. M. (2005) Probiotic and other functional microbes: from markets to mechanisms. Curr. Opin. Biotechnol. 16, 204-211 crossref(new window)

Schaafsma, G. (1996a) Significance of probiotics in human diets. In: SOMED 21st International Congress on Microbial Ecology and Disease, Paris, October 28-30. pp. 38

Schaafsma, G. (1996b) State of the art concerning probiotic strains in milk products. IDF Nutrition Newsletters. 5, 23-24

Sugita, T. and Togawa, M. (1994) Efficacy of Lactobacillus preparation Biolactis powder in children with rotavirus enteritis. Jpn. J. Pediatr. 47, 2755-2762