Advanced SearchSearch Tips
Physiological Effects of Casein-derived Bioactive Peptides
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Physiological Effects of Casein-derived Bioactive Peptides
Jung, Ho-Jung; Min, Bock-Ki; Kwak, Hae-Soo;
  PDF(new window)
Casein is considered to be the main source of protein in milk; therefore, many studies have been conducted to identify casein-derived bioactive peptides and their physiological effects. Casein is inactive within the parent protein but can be liberated by various proteases and enzymatic hydrolysis during microbial fermentation and gastrointestinal digestion. Once absorbed, casein exhibits different bioavailabilities in the body. Specifically, casein-derived peptides function as angiotensin converting enzyme (ACE) inhibitor in the cardiovascular system; thus, they are expected to reduce and prevent hypertension. Additionally, casein-derived peptides behave as opioid-like peptides in the nervous system, which impacts relaxation. These peptides are also expected to modulate various aspects of immune functions. Finally, caseinophosphopeptide (CPP) and glycomacropeptide (GMP) may exhibit a number of nutritional effects such as the absorption of calcium, iron or zinc. Many studies have been conducted to evaluate casein-derived peptides due to their multifunctional properties and the results of these studies have contributed to the development of a wide variety of functional dairy products. The purpose of this paper was to review the generation of bioactive peptides, their absorption and metabolism, and their specific bioactive effects.
bioactive peptides;casein;milk;absorption;functionality;
 Cited by
Prevention of lipid oxidation in muscle foods by milk proteins and peptides: A review, Food Reviews International, 2016, 1  crossref(new windwow)
Aimutis, W. R. (2004) Bioactive properties of milk proteins with particular focus on anticariogenesis. J. Nutr. 134, 989S-995S crossref(new window)

Ait-Oukhatar, N., Peres, J. M., Bouhallab, S., Neuville, D., Bureau, F., Bouvard, G., Arhan, P., and Bougle, D. (2002) Bioavailability of caseinophosphopeptide-bound iron. J. Lab. Clin. Med. 140, 290-294 crossref(new window)

Andrews, A. T., Williams, R. J. H., Brownsell, V. L., Isgrove, F. H., Jenkins, K., and Kanekanian, A. D. (2006) $\beta$-CN-5P and $\beta$-CN-4P components of bovine milk proteose–peptone: large scale preparation and influence on the growth of cariogenic microorganisms. Food Chem. 96, 234-241 crossref(new window)

Ardo, Y., Lilbæk, H., Kristiansen, K. R., Zakora, M., and Otte, J. (2007) Identification of large phosphopeptides from $\beta$-casein that characteristically accumulate during ripening of the semi-hard cheese Herrg${\aa}$rd. Int. Dairy J. 17, 513-524 crossref(new window)

Ashar, M. N. and Chand, R. (2004) Fermented milk containing ACE-inhibitory peptides reduces blood pressure in middle aged hypertensive subjects. Milchwissenschaft 59, 363-366

Blondelle, S. E. and Lohner, K. (2000) Combinatorial libraries: a tool to design antimicrobial and antifungal peptide analogues having lytic specificities for structure-activity relationship studies. Biopolymers 55, 74-87 crossref(new window)

Bruck, W. M., Graverholt, G., and Gibson, G. R. (2003) A two-stage continuous culture system to study the effect of supplemental α-lactalbumin and glycomacropeptide on mixed cultures of human gut bacteria challenged with enteropathogenic Escherichia coli and Salmonella serotype Typhimurium. J. Appl. Microbiol. 95, 44-53 crossref(new window)

Buikofer, U., Meyer, J., Sieber, R., and Wechsler, D. (2007) Quantification of the angiotensin-converting enzyme-inhibiting tripeptides Val-Pro-Pro and Ile-Pro-Pro in hard, semihard and soft cheeses. Int. Dairy J. 17, 968-975 crossref(new window)

Clare, D. A. and Swaisgood, H. E. (2000) Bioactive milk peptides: a prospectus. J. Dairy Sci. 83, 1187-1195 crossref(new window)

Cross, M. L., Mortensen, R. R., Kudsk, J., and Gill, H. S. (2002) Dietary intake of Lactobacillus rhamnosus HNOO1 enhances production of both Th1 and Th2 cytokines in antigen- primed mice. Med. Microbiol. Immunol. 191, 49-53 crossref(new window)

del Mar Contreras, M., Carron, R., Montero, M. J., Ramos, M., and Recio, I. (2009) Novel casein-derived peptides with antihypertensive activity. Int. Dairy J. 19, 566-573 crossref(new window)

Dziuba, J., Minkiewicz, P., Nalecz D., and Iwaniak, A. (1999) Database of biologically active peptide sequences. Nahrung. 43, 190-195 crossref(new window)

Erdmann, K., Cheung, B. W., and Schroder, H. (2008) The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J. Nutr. Biochem. 19, 643-654 crossref(new window)

Fei, Y. J., Kanai, Y., Nussberger, S., Ganapathy, V., Leibach, F. H., Romero, M. F., Singh, S. K., Boron, W. F., and Hediger, M. A. (1994) Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature 368, 563-566 crossref(new window)

Ferranti, P., Traisci, M. V., Picariello, G., Nasi, A., Boschi, V., Siervo, M., Falconi, C., Chianese, L., and Addeo, F. (2004) Casein proteolysis in human milk: tracing the pattern of casein breakdown and the formation of potential bioactive peptides. J. Dairy Res. 71, 74-87 crossref(new window)

FitzGerald, R. J. and Meisel, H. (2000) Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme. Br. J. Nutr. 84, 33-37 crossref(new window)

FitzGerald, R. J. and Murray, B. A. (2006) Bioactive peptides and lactic fermentations. Int. J. Dairy Technol. 59, 118-125 crossref(new window)

Foltz, M., Meynen, E. E., Bianco, V., van Platerink, C., Koning, T. M. M.G., and Kloek, J. (2007) Angiotensin converting enzyme inhibitory peptides from a lactotripeptide-enriched milk beverage are absorbed intact into the circulation. J. Nutr. 137, 953-958 crossref(new window)

Fox, P. F. and Brodkorb, A. (2008) The casein micelle: historical aspects, current concepts and significance. Int. Dairy J. 18, 677-684 crossref(new window)

Fuglsang, A., Nilsson, D., and Nyborg, N. C. B. (2003) Characterization of new milk-derived inhibitors of angiotensin converting enzyme in vitro and in vivo. J. Enzyme Inhib. Med. Chem. 18, 407-412

Ganapathy, V., Leibach, F. H., and Yamada, T. (1999) Protein digestion and assimilation. In: Textbook of Gastroenterology. 3rd ed. Yamada, T. (ed). Lippincott Williams and Wilkins ilkins, Philadelphia, PA, USA, pp. 456-467

Ganong, W. F. (1997) Section V. In review of medical physiology, Appleton and Lange, Stamford, CT, USA , pp. 437-481

Garcia-Nebot, M. J., Alegria, A., Barbera, R., Clemente, G., and Romero, F. (2009) Addition of milk or caseinophosphopeptides to fruit beverages to improve iron bioavailability? Food Chem. doi:10.1016/j.foodchem.2009.06.005

Gobbetti, M., Ferranti, P., Smacchi, E., Goffredi, F., and Addeo, F. (2000) Production of angiotensin-I-convertingenzyme-inhibitory peptides in fermented milks started by Lactobacillus delbrueckii subsp. bulgaricus SS1 and Lactococcus lactis subsp. cremoris FT4. Appl. Environ. Microbiol. 66, 3898-3904 crossref(new window)

Gobbetti, M., Stepaniak, L., De Angelis, M., Corsetti, A., and Cagno, R. D. (2002) Latent bioactive peptides in milk proteins: proteolytic activation and significance in dairy processing. Crit. Rev. Food Sci. Nutr. 42, 223-239 crossref(new window)

Gray, G. M. and Cooper, H. L. (1971) Protein digestion and absorption. Gastroenterology 61, 535-544

Grimble, G. K. (2000) Mechanisms of peptide and amino acid transport and their regulation. Furst, P., and Young, V. (eds.), In proteins, peptides and amino acids in enteral nutrition, Karger and Nestec, Basel, Switzerland, pp. 63-88

Hata, Y., Yamamoto, M., Ohni, M., Nakajima, K., Nakamura, Y., and Takano, T. (1996) A placebo-controlled study of the effect of sour milk on blood pressure in hypertensive subjects. Am. J. Clin. Nutr. 64, 767-771 crossref(new window)

Haug, A., Høstmark, A. T., and Harstad, O. M. (2007) Bovine milk in human nutrition-a review. Lipids Health Dis. 6, 25-41 crossref(new window)

Hern$\acute{a}$ndez-Ledesma, B., Amigo, L., Ramos, M., and Recio, I. (2004) Angiotensin converting enzyme inhibitory activity in commercial fermented products. Formation of peptides under simulated gastrointestinal digestion. J. Agric. Food Chem. 52, 1504-1510 crossref(new window)

Iwan, M., Jarmolowska, B., Bielikowicz, K., Kostyra, E., Kostyra, H., and Kaczmarski, M. (2008) Transport of ì-opioid receptor agonists and antagonist peptides across Caco-2 monolayer. Peptides 29, 1042-1047 crossref(new window)

Jauhiainen, T. and Korpela, R. (2007) Milk peptides and blood pressure. J. Nutr. 137, 825S-829S crossref(new window)

Jauhiainen, T., Vapaatalo, H., Poussa, T., Kyronpalo, S., Rasmussen, M., and Korpela, R. (2005) Lactobacillus helveticus fermented milk lowers blood pressure in hypertensive subjects in 24-h ambulatory blood pressure measurement. Am. J. Hypertens. 18, 1600-1605 crossref(new window)

Jolles, P., Parker, F., Floch, F., Migliore, D., Alliel, P., Zerial, A., and Werner, G. H. (1981) Immunostimulating substances from human casein. Immunopharmacol. Immunotoxicol. 3, 363-370

Juillard, V., Guillot, A., Le Bars, D., and Gripon, J. C. (1998) Specificity of milk peptide utilization by Lactococcus lactis. Appl. Environ. Microbiol. 64, 1230-1236

Kelleher, S. L., Chatterton, D., Nielsen, K., and Lonnerdal, B. (2003) Glycomacropeptide and $\alpha$-lactalbumin supplementation of infant formula affects growth and nutritional status in infant rhesus monkeys. Am. J. Clin. Nutr. 77, 1261- 1268 crossref(new window)

Kilara, A. and Panyam, D. (2003) Peptides from milk proteins and their properties. Crit Rev. Food Sci. Nutr. 43, 607 - 633 crossref(new window)

Korhonen, H. (2009) Milk-derived bioactive peptides: from science to applications. J. Funct. Foods 1, 177-187 crossref(new window)

Korhonen, H. and Pihlanto-Leppala, A. (2003a) Bioactive peptides: novel applications for milk proteins. Appl. Biotech. Food Sci. Policy 1, 133-144

Korhonen, H. and Pihlanto-Leppala, A. (2003b) Foodderived bioactive peptides-opportunities for designing future foods. Curr. Pharm. Des. 9, 1297-1308 crossref(new window)

Korhonen, H. and Pihlanto-Leppala, A. (2004) Milk-derived bioactive peptides: formation and prospects for health promotion. In hand-book of functional dairy products. Functional foods and nutraceuticals series 6.0, Shortt, C. and O’Brien, J. (eds.), CRC Press, Boca Raton, FL, USA, pp. 109-124

Kostyra, E., Sienkiewicz-Szlapka, E., Jarmolowska, B., Krawczuk, S., and Kostyra, H. (2004) Opioid peptides derived from milk proteins. Pol. J. Food Nutr. Sci. 13, 25-35

Leclerc, P. L., Gauthier, S. F., Bachelard, H., Santure, M., and Roy, D. (2002) Antihypertensive activity of caseinenriched milk fermented by Lactobacillus helveticus. Int. Dairy J. 12, 995-1004 crossref(new window)

Matar, C., Valdez, J. C., Medina, M., Rachid, M., and Perdigon, G. (2001) Immunomodulating effects of milks fermented by Lactobacillus helveticus and its non-proteolytic variant. J. Dairy Res. 68, 601-609 crossref(new window)

Meisel, H. and FitzGerald, R. J. (2003) Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects. Curr. Pharm. Des. 9, 1289-1295 crossref(new window)

Meisel, H. and FitzGerald, R. J. (2000) Opioid peptides encrypted in intact milk protein sequences. Br. J. Nutr. 84, 27-31 crossref(new window)

Moller, N. P., Scholz-Ahrens, K. E., Roos, N., and Schrezenmeir, J. (2008) Bioactive peptides and proteins from foods: indication for health effects. Eur. J. Nutr. 47, 171-182 crossref(new window)

Nielsen, M. S., Martinussen, T., Flambard, B., Sorensen, K. I., and Otte, J. (2009) Peptide profiles and angiotensin I converting enzyme inhibitory activity of fermented milk products: effect of bacterial strain, fermentation pH, and storage time. Int. Dairy J. 19, 155-165 crossref(new window)

Ondetti, M. A. and Cushman, D. W. (1982) Enzymes of the renin-angiotensin system and their inhibitors. Annu. Rev. Biochem. 51, 283-308 crossref(new window)

Ong, L. and Shah, N. P. (2008) Release and identification of angiotensin-converting enzyme-inhibitory peptides as influenced by ripening temperatures and probiotic adjuncts in Cheddar cheeses. LWT Food Sci. Technol. 41, 1555-1566 crossref(new window)

Otani, H., Kihara, Y., and Park, M. (2000) The immunoenhancing property of a dietary casein phosphopeptide preparation in mice. Food Agr. Immunol. 12, 165 - 173 crossref(new window)

Parrot, S., Degraeve, P., Curia, C., and Martial-Gros, A. (2003) In vitro study on digestion of peptides in Emmental cheese: analytical evaluation and influence on angiotensin I converting enzyme inhibitory peptides. Nahrung. 47, 87-94 crossref(new window)

Pauliina, J., Jauhiainen, T., Korpela, R., and Vapaatalo, H. (2009) Milk protein-derived bioactive tripeptides Ile-Pro- Pro and Val-Pro-Pro protect endothelial function in vitro in hypertensive rats. J. Funct. Foods 1, 266-273 crossref(new window)

Phelan, M., Aherne, A., FitzGerald, R. J., and O'Brien, N. M. (2009) Casein-derived bioactive peptides: biological effects, industrial uses, safety aspects and regulatory status. Int. Dairy J. 19, 643-654 crossref(new window)

Pihlanto-Leppala, A., Marnila, P., Hubert, L., Rokka, T., Korhonen, H. J. T., and Karp, M. (1999) The effect of $\alpha$-lactalbumin and $\beta$-lactoglobulin hydrolysates on the metabolic activity of Escherichia coli JM103 J. Appl. Microbiol. 87, 540-545 crossref(new window)

Quir, A., Dávalos, A., Lasunci, M. A., Ramos, M., and Recio, I. (2008) Bioavailability of the antihypertensive peptide LHLPLP: transepithelial flux of HLPLP. Int. Dairy J. 18, 279-286 crossref(new window)

Reichelt, K. L. and Knivsberg, A. M. (2003) Can the pathophysiology of autism be explained by the nature of the discovered urine peptides? Nutr. Neurosci. 6, 19-28 crossref(new window)

Ruiz, P. A., Hoffmann, M., Szcesny, S., Blaut, M., and Haller, D. (2005) Innate mechanisms for Bifidobacterium lactis to activate transient pro-inflammatory host responses in intestinal epithelial cells after the colonization of germfree rats. Immunology 115, 441-450 crossref(new window)

Saito, T., Nakamura, T., Kitazawa, H., Kawai, Y., and Itoh, T. (2000) Isolation and structural analysis of antihypertensive peptides that exist naturally in Gouda cheese. J. Dairy Sci. 83, 1434-1440 crossref(new window)

Sashihara, T., Sueki, N., and Ikegami, S. (2006) An analysis of the effectiveness of heat-killed lactic acid bacteria in alleviating allergic diseases. J. Dairy Sci. 89, 2846-2855 crossref(new window)

Satake, M., Enjoh, M., Nakamura, Y., Takano, T., Kawamura, Y., Arai, S., and Shimizu, M. (2002) Transepithelial transport of the bioactive tripeptide, Val-Pro-Pro, in human intestinal Caco-2 cell monolayers. Biosci. Biotechnol. Biochem. 66, 378-384 crossref(new window)

Saxena, P. R. (1992) Interaction between the renin-angiotensin- aldosterone and sympathetic nervous systems. J. Cardiovasc. Pharmacol. 19 Suppl 6, S80-8 crossref(new window)

Seppo, L., Jauhiainen, T., Poussa, T., and Korpela, R. (2003) A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects. Am. J. Clin. Nutr. 77, 326-330 crossref(new window)

Shimizu, M. (2004) Food-derived peptides and intestinal functions. Bio. Factors 21, 43-47 crossref(new window)

Sienkiewicz-Szlapka, E., Jarmolowska, B., Krawczuk, S., Kostyra, E., Kostyra, H., and Bielikowicz, K. (2009a) Transport of bovine milk-derived opioid peptides across a Caco-2 monolayer. Int. Dairy J. 19, 252-257 crossref(new window)

Sienkiewicz-Szlapka, E., Jarmolowska, B., Krawczuk, S., Kostyra, E., Kostyra, H., and Iwan, M. (2009b) Contents of agonistic and antagonistic opioid peptides in different cheese varieties. Int. Dairy J. 19, 258-263 crossref(new window)

Silva, S. V. and Malcata, F. (2005) Caseins as source of bioactive peptides. Int. Dairy J. 15, 1-15 crossref(new window)

Sipola, M., Finckenberg, P., Korpela, R., Vapaatalo, H., and Nurminen, M. L. (2002) Effect of long-term intake of milk products on blood pressure in hypertensive rats. J. Dairy Res. 69, 103-111 crossref(new window)

Sipola, M., Finckenberg, P., Santisteban, J., Korpela, R., Vapaatalo, H., and Nurminen, M. L. (2001) Long-term intake of milk peptides attenuates development of hypertension in spontaneously hypertensive rats. J. Physiol. Pharmacol. 52, 745-754

Sun, H., Liu, D., Li, S., and Qin, Z. (2009) Transepithelial transport characteristics of the antihypertensive peptide, Lys- Val-Leu-Pro-Val-Pro, in human intestinal Caco-2 cell monolayers. Biosci. Biotechnol. Biochem. 73, 293-298 crossref(new window)

Sun, Z., Zhang, Z., Wang, X., Cade, R., Elmir, Z., and Fregly, M. (2003) Relation of β-casomorphin to apnea in sudden infant death syndrome. Peptides 24, 937-943 crossref(new window)

Teschemacher, H. (2003) Opioid receptor ligands derived from food proteins. Curr. Pharm. Des. 9, 1331-1344 crossref(new window)

Ueno, K., Mizuno, S., and Yamamoto, N. (2004) Purification and characterization of an endopeptidase that has an important role in the carboxyl terminal processing of antihypertensive peptides in Lactobacillus helveticus CM4. Lett. Appl. Microbiol. 39, 313-318 crossref(new window)

Vermeirssen, V., Camp, J. V., and Verstraete, W. (2004) Bioavailability of angiotensin I converting enzyme inhibitory peptides. Br. J. Nutr. 92, 357-366 crossref(new window)

Yamamoto, N., Akino, A., and Takano, T. (1994) Antihypertensive effect of the peptides derived from casein by an extracellular proteinase from Lactobacillus helveticus CP790. J. Dairy Sci. 77, 917-922 crossref(new window)