JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Predictive Model for Growth of Staphylococcus aureus in Suyuk
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Predictive Model for Growth of Staphylococcus aureus in Suyuk
Park, Hyoung-Su; Bahk, Gyung-Jin; Park, Ki-Hwan; Pak, Ji-Yeon; Ryu, Kyung;
  PDF(new window)
 Abstract
Cooked pork can be easily contaminated with Staphylococcus aureus during carriage and serving after cooking. This study was performed to develop growth prediction models of S. aureus to assure the safety of cooked pork. The Baranyi and Gompertz primary predictive models were compared. These growth models for S. aureus in cooked pork were developed at storage temperatures of 5, 15, and . The specific growth rate (SGR) and lag time (LT) values were calculated. The Baranyi model, which displayed a of 0.98 and root mean square error (RMSE) of 0.27, was more compatible than the Gompertz model, which displayed 0.84 in both and RMSE. The Baranyi model was used to develop a response surface secondary model to indicate changes of LT and SGR values according to storage temperature. The compatibility of the developed model was confirmed by calculating , , , and RMSE values as statistic parameters. At 5, 15 and , was 0.88, 0.99 and 0.99; RMSE was 0.11, 0.24 and 0.10; was 1.12, 1.02 and 1.03; and was 1.17, 1.03 and 1.03, respectively. The developed predictive growth model is suitable to predict the growth of S. aureus in cooked pork, and so has potential in the microbial risk assessment as an input value or model.
 Keywords
Suyuk;Staphylococcus aureus;predictive model;Baranyi;Gompertz;
 Language
Korean
 Cited by
1.
어묵의 유통기한 예측모델의 개발,강지훈;송경빈;

한국식품영양과학회지, 2013. vol.42. 5, pp.832-836 crossref(new window)
2.
전처리 나물류 및 구근류에서 병원성 미생물의 성장예측모델 개발 및 검증,엔크자갈 라왁사르나이;민경진;윤기선;

한국식품영양과학회지, 2013. vol.42. 10, pp.1690-1700 crossref(new window)
3.
Predictive Modeling of Staphylococcus aureus Growth on Gwamegi (semidry Pacific saury) as a Function of Temperature,;;;;;

Applied Biological Chemistry, 2013. vol.56. 6, pp.731-738 crossref(new window)
4.
국내산 쇠고기 수육 및 육수의 영양소 잔존량에 관한 연구,이근종;김홍균;권용석;정혜정;

한국지역사회생활과학회지, 2014. vol.25. 2, pp.261-269 crossref(new window)
1.
Predictive model for the growth kinetics of Listeria monocytogenes in raw pork meat as a function of temperature, Food Control, 2014, 44, 16  crossref(new windwow)
2.
Predictive modeling of Staphylococcus aureus growth on Gwamegi (semidry Pacific saury) as a function of temperature, Journal of the Korean Society for Applied Biological Chemistry, 2013, 56, 6, 731  crossref(new windwow)
3.
Developing a Predictive Model for the Shelf-life of Fish Cake, Journal of the Korean Society of Food Science and Nutrition, 2013, 42, 5, 832  crossref(new windwow)
4.
Predictive model for the growth kinetics of Staphylococcus aureus in raw pork developed using Integrated Pathogen Modeling Program (IPMP) 2013, Meat Science, 2015, 107, 20  crossref(new windwow)
5.
Retention Factors Influencing Hanwoo Stock (broth) and Boiled Beef, The Korean Journal of Community Living Science, 2014, 25, 2, 261  crossref(new windwow)
6.
Development and Validation of Predictive Model for Foodborne Pathogens in Preprocessed Namuls and Wild Root Vegetables, Journal of the Korean Society of Food Science and Nutrition, 2013, 42, 10, 1690  crossref(new windwow)
 References
1.
Baranyi, J. and Roberts, T. A. (1995) Mathematics of predictive food microbiology. Int. J. Food Microbiol. 25, 61-75.

2.
Baranyi, T., Robinson, T. P., Kaloti, A., and Mackey, B. M. (1995) Predicting growth of Brochothrix thermosphacta at changing temperature. Int. J. Food Microbiol. 27, 61-75. crossref(new window)

3.
Baranyi, J., Ross, T., Roberts, T. A., and McMeekin, T. A. (1996) Effects of parameterization on the performance of empirical models used in 'predictive microbiology'. Food Microbiol. 13, 83-91. crossref(new window)

4.
Bean, N. H., Goulding, J. S., Matthew, T. D., and Angulo F. J. (1997) Surveillance for foodborne disease outbreaks- United States, 1988-1992. J. Food Prot. 60, 1265-1286.

5.
Bemrah, N., Sanaa, M., Cassin, M. H., Griffiths, M. W., and Cerf, O. (1998) Quantitative risk assessment of human listeriosis from consumption of soft cheese made from raw milk. Prev. Vet. Med. 37, 129-145. crossref(new window)

6.
Bharathi, S., Ramesh, M. N., and Varadaraj, M. C. (2001) Predicting the behavioural pattern of Escherichia coli in minimally processed vegetables. Food Control 12, 275-284. crossref(new window)

7.
Castillejo-Rodriguez, A. M., Gimeno, R. M. G., Cosano, G. Z., Alcala, E. B., and Perez, M. R. R. (2002) Assessment of mathematical models for predicting Staphylococcus aureus growth in cooked meat products. J. Food Prot. 65, 659-665.

8.
Chung, M. S. (2007) Study on the risk management for risk reduction of Staphylococcus aureus in ready-to-eat foods (II). The final report of Korea Food and Drug Administration research project. Korea Health Industry Development Institute pp.157-185.

9.
Dengremont, E. and Membre, J. M. (1995) Statistical approach for comparison of the growth rates of five strains of Staphylococcus aureus. Appl. Environ. Microbiol. 61, 4389- 4395.

10.
Duffy, L. L., Vanderline, P. B., and Grau, F. H. (1994) Growth of Listeria monocytogenes on vaccum-packed cooked meats: effects of pH, Aw, nitrite and sodium ascorbate. Int. J. Food Microbiol. 23, 377-390. crossref(new window)

11.
Eifert, J. D., Gennings, C., Carter Jr, W. H., Duncan, S. E., and Hackney, C. R. (1996) Predictive model with improved statistical analysis of interactive factors affecting the growth of Staphylococcus aureus 196E. J. Food Prot. 59, 608-614.

12.
Fujikawa, H. and Morozumi, S. (2006) Modeling Staphylococcus aureus growth and enterotoxin production in milk. Food Microbiol. 23, 260-267. crossref(new window)

13.
Fujikawa, H., Yano, K., and Morozumi, S. (2006) Model comparison for Escherichia coli growth in Pouched Food. J. Food Hyg. Soc. Japan 47, 115-118. crossref(new window)

14.
Gibson, A.M., Bratchell, N., and Roberts, T. A. (1988) Predicting microbial growth: growth response of Salmonella in laboratory medium as affected by pH, sodium chloride and storage temperature. Int. J. Food Microbiol. 6, 155-178. crossref(new window)

15.
Gospavic, R., Kreyenschmidt, J., Bruckner, S., Popov, V., and Haque, N. (2008) Mathematical modelling for predicting the growth of Pseudomonas spp. in poultry under variable temperature conditions. Int. J. Food Microbiol. 127, 290- 297. crossref(new window)

16.
Jung, I. C., Moon, Y. H., and Kang, S. J. (2004) Effects of addition of Mugwort powder on the physicochemincal and sensory characteristics of boiled pork. Korean J. Food Sci. Ani. Resour. 24, 15-22.

17.
Kang, Y. S., Yoon, S. K., Jwa, S. H., Lee, D. H., and Woo, G. J. (2002) Prevalence of Staphylococcus aureus in Kimbap. J. Fd. Hyg. Safety 17, 31-35.

18.
Karl, M. and Da-Wen, S. (1999) Predictive food microbiology for the meat industry; a review. Int. J. Food Microbiol. 52, 1-72. crossref(new window)

19.
Kim E. J. (2004) Analysis of microbiological hazards and quantitative microbial risk assessment of Staphylococcus aureus inoculated onto potentially hazardous foods in school foodservice operations. MS thesis, Yonsei Univ., Seoul, Korea.

20.
Korea Food and Drug Administration. Foodborne Illness Statistics. Available from: http://www.kfda.go.kr. Accessed Mar. 20, 2009.

21.
Korean Dietetic Association (2007) The Standard Recipe In: A Guideline for Foodservice Management, p. 283, Seoul, Korea.

22.
Koseki, S. and Isobe, S. (2005) Prediction of pathogen growth on iceberg lettuce under real temperature history during distribution from farm to table. Int. J. Food Microbiol. 104, 239-248. crossref(new window)

23.
Lee, H. M., Lee, G. Y., Yoon, E. K., Kim, H. J., Kang, Y. S., Lee, D. H., Park, J. S., Lee, S. H., Woo, G. J., Kang, S. H., Yang, J. S., and Yang, K. H. (2004) Computation of maximum edible time using monitoring data of Staphylococcus aureus in Kimbap and Food MicroModel. J. Fd. Hyg. Safety 19, 49-51.

24.
Lindqvist, R., Sylven, S., and Vagsholm, I. (2002) Quantitative microbial risk assessment exemplified by Staphylococcus aureus in unripened cheese made from raw milk. Int. J. Food Microbiol. 78, 144-170.

25.
Park, S. Y., Choi, J. W., Chung, D. H., Kim, M. G., Lee, K. H., Kim, K. S., Bahk, G. J., Bae, D. H., Park, S. K., Kim, K. Y., Kim, C. H., and Ha, S. D. (2007) Development of a predictive mathematical model for the growth kinetics of Listeria monocytogenes in sesame leaves. Food Sci. Biotechnol. 16, 238-242.

26.
Pereira, M. L., Carmo do, L. S., Santos dos, E. J., and Bergdoll, M. S. (1994) Staphylococcus food poisoning from cream-filled cake in metropolitan area of south-eastern Brazil. Rev. Saude Publica 28, 406-409.

27.
Ross, T. (1996) Indices for performance evaluation of predictive model in food microbiology. J. Appl. Bacteriol. 81, 201-508. crossref(new window)

28.
Ross, T. (1999) Predictive food microbiology models in the meat industry. Meat and Livestock Australia, Sydney, Australia, p. 196.

29.
Sutherland, J. P., Bayliss, A. J., and Robert, T. A. (1994) Predictive modelling of growth Staphylococcus aureus: the effects of temperature, pH and sodium chloride. Int. J. Food Microbiol. 21, 217-236. crossref(new window)

30.
Tatini S, R. (1973) Influence of food environments on growth of Staphylococcus aureus and production of various enterotoxins. J. Milk Food Technol. 36, 559-563.

31.
Tirado, C. and Schimdt, K. (2001) WHO surveillance program for control of food-borne infections and intoxication: preliminary results and trends across greater Europe. J. Infect. 43, 80-84. crossref(new window)

32.
Whiting, R. C. (1995) Microbial modelling in foods. Critical Rev. Food Sci. Nutr. 35, 467-494. crossref(new window)

33.
Yang, S. E., Yu, R. C., and Chou, C. C. (2001) Influence of holding temperature on the growth and survival of Salmonella spp. and Staphylococcus aureus and the production of Staphylococcus enterotoxin in egg products. Int. J. Food Microbiol. 63, 99-107. crossref(new window)