JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Calcium Mobilization Inhibits Lipid Accumulation During the Late Adipogenesis via Suppression of PPARγ and LXRα Signalings
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Calcium Mobilization Inhibits Lipid Accumulation During the Late Adipogenesis via Suppression of PPARγ and LXRα Signalings
Kim, Seung-Jin; Choi, Ho-Jung; Jung, Chung-Hwan; Park, Sung-Soo; Cho, Seung-Rye; Oh, Se-Jong; Kim, Eung-Seok;
  PDF(new window)
 Abstract
Calcium plays a role as a signaling molecule in various cellular events. It has been reported that calcium suppresses adipocyte differentiation only in the early phase of adipogenesis. Herein, we demonstrate that treatment of A23187, a mobilizer of intracellular calcium, on day 4 post adipocyte differentiation could still reduce lipid accumulation in differentiating 3T3-L1 cells for 48 h. In addition, luciferase reporter gene and RT-Q-PCR assays demonstrate that A23187 can selectively inhibit transcriptional activities and expression of PPAR and LXR, suggesting that A23187 may reduce lipid accumulation in the late phase of adipogenesis via downregulation of PPAR and LXR expression and transactivation. Moreover, inhibition of HDAC activity by trichostatin A (TSA) partially blocked A23187-mediated downregulation of transcriptional activities of PPAR and LXR. Together, our data demonstrate that calcium mobilization inhibits expression and transcriptional activities of PPAR and LXR, resulting in reduced lipid accumulation in differentiating adipocytes, and thus, mobilization of intracellular calcium in adipocytes may serve as a new preventive and therapeutic approach for obesity.
 Keywords
Calcium;adipocyte;PPAR;LXR;
 Language
English
 Cited by
1.
TR4 Inhibits LXR-mediated Decrease of Lipid Accumulation in 3T3-L1 Adipocytes,;;

한국축산식품학회지, 2011. vol.31. 3, pp.398-404 crossref(new window)
2.
Conjugated Linoleic Acid Negatively Regulates TR4 Activity in 3T3-L1 Adipocytes,;;

한국축산식품학회지, 2011. vol.31. 3, pp.381-388 crossref(new window)
1.
Conjugated Linoleic Acid Negatively Regulates TR4 Activity in 3T3-L1 Adipocytes, Korean Journal for Food Science of Animal Resources, 2011, 31, 3, 381  crossref(new windwow)
2.
TR4 Inhibits LXR-mediated Decrease of Lipid Accumulation in 3T3-L1 Adipocytes, Korean Journal for Food Science of Animal Resources, 2011, 31, 3, 398  crossref(new windwow)
 References
1.
Berger, J., Tanen, M., Elbrecht, A., Hermanowski-Vosatka, A., Moller, D. E., Wright, S. D., and Thieringer, R. (2001) Peroxisome proliferator-activated receptor-gamma ligands inhibit adipocyte 11beta-hydroxysteroid dehydrogenase type 1 expression and activity. J. Biol. Chem. 276, 12629-12635. crossref(new window)

2.
Berridge, M. J. (1993) Inositol trisphosphate and calcium signalling. Nature 361, 315-325. crossref(new window)

3.
Campbell, A. K. (1983) Intracellular calcium: Its universal role as regulator. John Wiley & Sons, Inc. Chichester; New York.

4.
Cariou, B., van Harmelen, K., Duran-Sandoval, D., van Dijk, T. H., Grefhorst, A., Abdelkarim, M., Caron, S., Torpier, G., Fruchart, J. C., Gonzalez, F. J., Kuipers, F., and Staels, B. (2006) The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J. Biol. Chem. 281, 11039-11049. crossref(new window)

5.
Chawla, A., Schwarz, E. J., Dimaculangan, D. D., and Lazar, M. A. (1994) Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 135, 798-800. crossref(new window)

6.
Chen, G., Liang, G., Ou, J., Goldstein, J. L., and Brown, M. S. (2004) Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver. Proc. Natl. Acad Sci. USA 101, 11245-11250. crossref(new window)

7.
Darlington, G. J., Ross, S. E., and MacDougald, O. A. (1998) The role of C/EBP genes in adipocyte differentiation. J. Biol. Chem. 273, 30057-30060. crossref(new window)

8.
Draznin, B., Sussman, K. E., Eckel, R. H., Kao, M., Yost, T., and Sherman, N. A. (1988) Possible role of cytosolic free calcium concentrations in mediating insulin resistance of obesity and hyperinsulinemia. J. Clin. Invest. 82, 1848-1852. crossref(new window)

9.
Duffus, J. H. and Patterson, L. J. (1974) Control of cell division in yeast using the ionophore, A23187 with calcium and magnesium. Nature 251, 626-627. crossref(new window)

10.
Evans, R. M. (1988) The steroid and thyroid hormone receptor superfamily. Science 240, 889-895. crossref(new window)

11.
Forman, B. M., Tontonoz, P., Chen, J., Brun, R. P., Spiegelman, B. M., and Evans, R. M. (1995) 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 83, 803-812. crossref(new window)

12.
Fu, M., Sun, T., Bookout, A. L., Downes, M., Yu, R. T., Evans, R. M., and Mangelsdorf, D. J. (2005) A Nuclear Receptor Atlas: 3T3-L1 adipogenesis. Mol. Endocrinol. 19, 2437-2450. crossref(new window)

13.
Giguere, V. (1999) Orphan nuclear receptors: from gene to function. Endocr. Rev. 20, 689-725. crossref(new window)

14.
Gregoire, F. M., Smas, C. M., and Sul, H. S. (1998) Understanding adipocyte differentiation. Physiol. Rev. 78, 783-809

15.
Gregor, M. F. and Hotamisligil, G. S. (2007) Thematic review series: Adipocyte Biology. Adipocyte stress: the endoplasmic reticulum and metabolic disease. J. Lipid. Res. 48, 1905-1914. crossref(new window)

16.
Guilherme, A., Virbasius, J. V., Puri, V., and Czech, M. P. (2008) Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9, 367-377. crossref(new window)

17.
Jensen, B., Farach-Carson, M. C., Kenaley, E., and Akanbi, K. A. (2004) High extracellular calcium attenuates adipogenesis in 3T3-L1 preadipocytes. Exp. Cell Res. 301, 280-292. crossref(new window)

18.
Joseph, S. B., Laffitte, B. A., Patel, P. H., Watson, M. A., Matsukuma, K. E., Walczak, R., Collins, J. L., Osborne, T. F., and Tontonoz, P. (2002) Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J. Biol. Chem. 277, 11019-11025. crossref(new window)

19.
Juvet, L. K., Andresen, S. M., Schuster, G. U., Dalen, K. T., Tobin, K. A., Hollung, K., Haugen, F., Jacinto, S., Ulven, S. M., Bamberg, K., Gustafsson, J. A., and Nebb, H. I. (2003) On the role of liver X receptors in lipid accumulation in adipocytes. Mol. Endocrinol. 17, 172-182. crossref(new window)

20.
Kershaw, E. E. and Flier, J. S. (2004) Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 89, 2548-2556 crossref(new window)

21.
Kim, E., Xie, S., Yeh, S. D., Lee, Y. F., Collins, L. L., Hu, Y. C., Shyr, C. R., Mu, X. M., Liu, N. C., Chen, Y. T., Wang, P. H., and Chang, C. (2003) Disruption of TR4 orphan nuclear receptor reduces the expression of liver apolipoprotein E/CI/C-II gene cluster. J. Biol. Chem. 278, 46919-46926. crossref(new window)

22.
Kim, H. B., Kong, M., Kim, T. M., Suh, Y. H., Kim, W. H., Lim, J. H., Song, J. H., and Jung, M. H. (2006) NFATc4 and ATF3 negatively regulate adiponectin gene expression in 3T3-L1 adipocytes. Diabetes. 55, 1342-1352. crossref(new window)

23.
Kitamura, N., Wong, P., and Matsumura, F. (2006) Mechanistic investigation on the cause for reduced toxicity of TCDD in wa-1 homozygous TGFalpha mutant strain of mice as compared its matching wild-type counterpart, C57BL/6J mice. J. Biochem. Mol. Toxicol. 20, 151-158. crossref(new window)

24.
Laffitte, B. A., Joseph, S. B., Walczak, R., Pei, L., Wilpitz, D. C., Collins, J. L., and Tontonoz, P. (2001) Autoregulation of the human liver X receptor alpha promoter. Mol. Cell. Biol. 21, 7558-7568. crossref(new window)

25.
Lane, M. D., Tang, Q. Q., and Jiang, M. S. (1999) Role of the CCAAT enhancer binding proteins (C/EBPs) in adipocyte differentiation. Biochem. Biophys. Res. Commun. 266, 677-683. crossref(new window)

26.
Liang, G., Yang, J., Horton, J. D., Hammer, R. E., Goldstein, J. L., and Brown, M. S. (2002) Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c. J. Biol. Chem. 277, 9520-9528. crossref(new window)

27.
Moniotte, S., Kobzik, L., Feron, O., Trochu, J. N., Gauthier, C., and Balligand, J. L. (2001) Upregulation of beta(3)- adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation. 103, 1649-1655. crossref(new window)

28.
Papakonstantinou, E., Flatt, W. P., Huth, P. J., and Harris, R. B. (2003) High dietary calcium reduces body fat content, digestibility of fat, and serum vitamin D in rats. Obes. Res. 11, 387-394. crossref(new window)

29.
Peet, D. J., Turley, S. D., Ma,W., Janowski, B. A., Lobaccaro, J. M., Hammer, R. E., and Mangelsdorf, D. J. (1998) Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR$\alpha$. Cell. 93, 693-704. crossref(new window)

30.
Pilvi, T.K., Storvik, M., Louhelainen, M., Merasto, S., Korpela, R., and Mervaala, E. M. (2008) Effect of dietary calcium and dairy proteins on the adipose tissue gene expression profile in diet-induced obesity. J Nutrigenet Nutrigenomics. 1, 240-251. crossref(new window)

31.
Rosen, E. D. and Spiegelman, B. M. (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature. 444, 847-853. crossref(new window)

32.
Rosen, E. D., Walkey, C. J., Puigserver, P., and Spiegelman, B. M. (2000) Transcriptional regulation of adipogenesis. Genes. Dev. 14, 1293-1307.

33.
Schmid, B., Rippmann, J. F., Tadayyon, M., and Hamilton, B. S. (2005) Inhibition of fatty acid synthase prevents preadipocyte differentiation. Biochem. Biophys. Res. Commun. 328, 1073-1082. crossref(new window)

34.
Sekiya, M., Yahagi, N., Matsuzaka, T., Takeuchi, Y., Nakagawa, Y., Takahashi, H., Okazaki, H., Iizuka, Y., Ohashi, K., Gotoda, T., Ishibashi, S., Nagai, R., Yamazaki, T., Kadowaki, T., Yamada, N., Osuga, J., and Shimano, H. (2007) SREBP-1-independent regulation of lipogenic gene expression in adipocytes. J. Lipid. Res. 48, 1581-1591. crossref(new window)

35.
Shi, H., Halvorsen, Y. D., Ellis, P. N., Wilkison, W. O., and Zemel, M. B. (2000) Role of intracellular calcium in human adipocyte differentiation. Physiol Genomics. 3, 75-82.

36.
Shi, Y. and Burn, P. (2004) Lipid metabolic enzymes: emerging drug targets for the treatment of obesity. Nat. Rev. Drug Discov. 3, 695-710. crossref(new window)

37.
Szabo, E., Qiu, Y., Baksh, S., Michalak, M., and Opas, M. (2008) Calreticulin inhibits commitment to adipocyte differentiation. J. Cell Biol. 182, 103-116. crossref(new window)

38.
Volle, D. H., Mouzat, K., Duggavathi, R., Siddeek, B., Dechelotte, P., Sion, B., Veyssiere, G., Benahmed, M., and Lobaccaro, J. M. (2007) Multiple roles of the nuclear receptors for oxysterols liver X receptor to maintain male fertility. Mol. Endocrinol. 21, 1014-1027. crossref(new window)

39.
Whitehead, J. P., Molero, J. C., Clark, S., Martin, S., Meneilly, G., and James, D. E. (2001) The role of Ca2+ in insulin-stimulated glucose transport in 3T3-L1 cells. J. Biol. Chem. 276, 27816-27824. crossref(new window)

40.
Zayzafoon, M. (2006) Calcium/calmodulin signaling controls osteoblast growth and differentiation. J. Cell Biochem. 97, 56-70. crossref(new window)