JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Physiological Characteristics and Immunomodulating Activity of Streptococcus macedonicus LC743 Isolated from Raw Milk
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Physiological Characteristics and Immunomodulating Activity of Streptococcus macedonicus LC743 Isolated from Raw Milk
Cho, Seong-A; Kim, Kee-Sung; Do, Jeong-Ryong; Kim, Sae-Hun; Lim, Sang-Dong;
  PDF(new window)
 Abstract
To develop a new starter culture for fermented milk, Streptococcus macedonicus LC743 was isolated from raw milk and its physiological characteristics were investigated. S. macedonicus LC743 showed good immunomodulating activity compared to the index LAB starters tested. The optimum growth temperature of S. macedonicus LC743 was , and it took 18 h to reach pH 4.34 under these conditions. S. macedonicus LC743 showed higher sensitivity to novobiocin in a comparison of 15 different antibiotics and showed the highest resistance to gentamycin. It also showed higher activities of leucine arylamidase and acid phosphatase. Moreover, it was comparatively tolerant to bile juice and acid and displayed high resistance to Escherichia coli, Salmonella Typhimurium, Staphylococcus aureus with rates of 80.0%, 68.42%, and 81.54% respectively. These results demonstrate that S. macedonicus LC743 could be an excellent starter culture for fermented milk with a high level of immunomodulating activity.
 Keywords
Streptococcus macedonicus;immunomodulating activity;physiological characteristics;fermented milk;
 Language
English
 Cited by
1.
Cu-Soy Proteinate(Cu-SP)와 Herbal Mixture(HBM)의 급여가 육계의 생산성, 소장 내 미생물 균총 및 면역체계에 미치는 영향,김찬호;신광석;강환구;김지혁;황보종;최희철;문홍길;백인기;방한태;

한국가금학회지, 2014. vol.41. 3, pp.165-171 crossref(new window)
 References
1.
Baken, K. A., Enzendam, J., Gremmer, E. R., de Klerk, A., Pennings, J. L., Matthee, B., Peijnenburg A. A., and van Loveren, H. (2006) Evaluation of immunomodulation by Lactobacillus casei Shirota: Immune function, autoimmunity and gene expression. Int. J. Food Microbiol. 112, 8-18. crossref(new window)

2.
Bhakdi, S., Klonisch, T., Nuber, P., and Fischer, W. (1991) Stimulation of monokine production by lipoteichoic acids. Infect. Immun. 59, 4614-4620.

3.
Boje, K. M. (2004) Nitric oxide neurotoxicity in neurodegenerative diseases. Front. Biosci. 9, 763-776. crossref(new window)

4.
Booth, I. R. (1985) Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 49, 359-378.

5.
Brennan, P. A. and Moncada, S. (2002) From pollutant gas to biological messenger: the diverse actions of nitric oxide in cancer. Ann. R. Coll. Surg. Engl. 84, 75-78.

6.
Chen, T., Zamora, R., Zuckerbraun, B., and Billiar, T. R. (2003) Role of nitric oxide in liver injury. Curr. Mol. Med. 3, 519-526. crossref(new window)

7.
Clark, P. A., Cotton, L. N., and Martin, J. H. (1993) Selection of bifidobacteria for use as dietary adjuncts in cultured dairy foods: II-tolerance to simulated pH of human stomachs. Cul. Dairy Prod. J. 28, 11-14.

8.
Czarniecki, C. A. (1993) The role of tumor necrosis factor in viral disease. Antiviral Res. 22, 223-258. crossref(new window)

9.
Dinarello, C. A. (1987) The biology of interleukin 1 and comparison to tumor necrosis factor. Immunol. Lett. 16, 227-232. crossref(new window)

10.
Dinarello, C. A. (1991) Inflammatory cytokines: Interleukin- 1 and tumor necross factor as effector molecules in autoimmune diseases. Curr. Opin. Immunol. 3, 941-948. crossref(new window)

11.
Dziarski, R. (1991) Demonstration of peptidoglycan-binding sites on lymphocytes and macrophages by photoaffinity cross-linking. J. Biol. Chem. 266, 4713-4718.

12.
Gill, H. S. (1998). Stimulation of the immune system by lactic cultures. Int. Dairy J. 8, 535-544. crossref(new window)

13.
Gilliland, S. E. and Walker, D. K. (1990) Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in humans. J. Dairy Sci. 73, 905-911. crossref(new window)

14.
Gilliland, S. E. and Speck, M. L. (1977) Antagonistic action of Lactobacillus acidophilus toward intestinal and foodborne pathogens in associative cultures. J. Food Prot. 40, 820-823.

15.
Guzik, T. J., Korbut, R., and Adamek-Guzik, T. (2003) Nitric oxide and superoxide in inflammation and immune regulation. J. Physiol. Pharmacol. 54, 469-487.

16.
Heumann, D., Barras, C., Severin, A., Glauser, M. P., and Tomasz A. (1994) Gram-positive cell walls stimulate synthesis of tumor necrosis factor alpha and interleukin-6 by human monocytes. Infect. Immun. 62, 2715-2721.

17.
Jeon, S. R., Song, T. S., Kim, J. Y., Shin, W. C., Her, S. W., and Yoon, S. S. (2007) Identification and characterization of lactic acid bacteria starters isolated from the commercial drink-yogurt products. Korean J. Food Sci. Ani. Resour. 27, 509-516. crossref(new window)

18.
Kang, H. S., Kim, Y. H., Lee, C. S., Lee, J. J., Choi, I. P., and Pyun, K. H. (1996) Suppression of interleukin-1 and tumor necrosis factor-$\alpha$ production by acanthoic acid, (-)-pimara-9(11), 15-dien-19-oic acid, and its antifibrotic effects in vivo. Cell. Immunol. 170, 212-221. crossref(new window)

19.
Lefrancois, L. (1994) Basic aspects of intraepithelial lymphocyte immunobiology. In: Ogra, P. L., Mestecky, J., Lamm, M. E., Strober, W., McGhee, J. R., Bienenstock, J. (eds.): Handbook of Mucosal Immunology. Academic Press, San Diego. pp. 287-290.

20.
Lim, S. D., Kim, K. S., Cho, S. A., and Do, J. R. (2010) Physiological characteristics and immunomodulating activity by Lactobacillus paracasei subsp. paracasei BFI46 isolated from new-born infant feces. Korean J. Food Sci. Ani. Resour. 30, 223-231. crossref(new window)

21.
Lim, S. D., Kim, K. S., and Do, J. R. (2009) Physiological characteristics and GABA production of Lactobacillus acidophilus RMK567 isolated from raw milk. Korean J. Food Sci. Ani. Resour. 29, 15-23. crossref(new window)

22.
Matsumoto, M., Ohishi, H., and Benno, Y. (2004) $H^{+}$-ATPase activity in bifidobacterium with special reference to acid tolerance. Int. J. Food Microbiol. 93, 109-113. crossref(new window)

23.
Maragkoudakis, P. A., Zoumpopoulou, G., Miaris, C., Kalantzopoulos, G., Pot, B., and Tsakalidou, T. (2006) Probiotic potential of Lactobacillus strains isolated from dairy products. Int. Dairy J. 16, 189-199. crossref(new window)

24.
Marin, M. L., Tejada-Simon, M. V., Murtha, J., Ustunol, Z., and Pestka, J. J. (1997) Effects of Lactobacillus spp. on cytokine production by raw 264.7 macrophage and EL-4 thymoma cell lines. J. Food Prot. 60, 1364-1370.

25.
Mcdonald, L. C., Fleming, H. P., and Hassan, H. M. (1990) Acid tolerance of Leuconostoc mesenteroides and Lactobacillus casei. Appl. Environ. Microbiol. 53, 2124-2128.

26.
Meydani, S. N. (1990) Dietary modulation of cytokine production and biologic functions. Nutr. Rev. 48, 361-369.

27.
Moncada, S. (1999) Nitric oxide: discovery and impact on clinical medicine. J. R. Soc. Med. 92, 164-169.

28.
Nussler, A. K. and Thomson, A. W. (1992) Immunomodulatory agents in the laboratory and clinic. Parasitology 105, S5-S23 crossref(new window)

29.
Pan, X., Chen, F., Wu, T., Tang, H., and Shao, Z. (2009) The acid, bile tolerance and antimicrobial property of Lactobacillus acidophilus NIT. Food Control 20, 598-602 crossref(new window)

30.
Parente, E. and Ricciardi, A. (1999) Production, recovery and purifications of bacteriocins from lactic acid bacteria. Appl. Microbiol. Biotechnol. 52, 628-638. crossref(new window)

31.
Perdigon, G., Alvarez, S., and Medici, M. (1992) Systemic and local augmentation of the immune response in mice by feeding with milk fermented with Lactobacillus acidophilus and/or Lactobacillus casei. Dyn. Nutr. Res. 1, 66-76.

32.
Perdigon, G., Nader de Macías, M. E., Alvarez, S., Oliver, G., and Pesce de Ruiz Holgado, A. (1986) Effect of perorally administered lactobacilli on macrophage activation in mice. Infect. Immun. 53, 404-410.

33.
Succi, M., Tremonte, P., Reale, A., Sorrentino, E., Grazia, L., and Pacifico, S. (2005) Bile salt and acid tolerance of Lactobacillus rhamnosus strains isolated from Parmigiano Reggiano cheese. FEMS Microbiol. Lett. 244, 129-137. crossref(new window)

34.
Taguchi, T., Aicher, W. K., Fujihashi, K., Yamamoto, M., McGhee, J. R., Bluestone, J. A., and Kiyono, H. (1991) Novel function for intestinal intraepithelial lymphocytes: murine CD+, ${\gamma}/{\delta}$ TCR+ T cells produce IFN-$\gamma$ and IL-5. J. Immunol. 147, 3736-3744.

35.
Tejada-Simon, M. V. , Ustunol, Z., and Pestka, J. J. (1999) Ex vivo effects of lactobacilli, streptococci, and bifidobacteria ingestion on cytokine and nitric oxide production in a murine model. J. Food Prot. 62, 162-169.

36.
Tufano, M. A., Cipollaro, De Lero G., Innielo, R., Galdiero, M., and Galdiero, F. (1991) Protein A and other surface components of Staphylococcus aureus stimulate production of IL-$1{\alpha}$, IL-6, TNF and IFN-$\gamma$. Eur. Cytokin. Netw. 2, 361-366.

37.
Ventura, M., Canchaya, C., van Sinderen, D., Fitzgerald, G. F., and Zink, R. (2004) Bifidobacterium lactis DSM 10140: identification of the atp (atpBEFHAGDC) operon and analysis of its genetic structure, characteristics, and phylogeny. Appl. Environ. Microbiol. 70, 3110-3121. crossref(new window)

38.
Zeidler, M. R., Kleerup, E. C., and Tashkin, D. P. (2004) Exhaled nitric oxide in the assessment of asthma. Curr. Opin. Pulm. Med. 10, 31-36. crossref(new window)

39.
Zucker, I. H., Schultz, H. D., Li, Y. F., Wang, Y., Wang, W., and Patel, K. P. (2004) The origin of sympathetic outflow in heart failure: the roles of angiotensin II and nitric oxide, Prog. Biophys. Mol. Biol. 84, 217-232. crossref(new window)