Advanced SearchSearch Tips
Effects of Crude Proteases Extracted from Bacillus polyfermenticus on Tenderizing Pork Meat
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of Crude Proteases Extracted from Bacillus polyfermenticus on Tenderizing Pork Meat
Kim, Jin-Man; Choi, Yun-Sang; Choi, Ji-Hun; Choi, Gooi-Hun; Lee, Jang-Hyun; Paik, Hyun-Dong; Kim, Cheon-Jei;
  PDF(new window)
The purpose of this study was to examine the effect of a crude protease from Bacillus polyfermenticus on tenderizing pork meat. A B. polyfermenticus protease was characterized, and pork loin samples were treated in solutions containing different enzymes (papain and proteases from Aspergillus oryzae and B. polyfermenticus) and stored for 24, 72, or 168 h at . Each treated sample was subjected to a quality assessment. B. polyfermenticus protease activity was lower than that for other enzymes tested, although it easily hydrolyzed the meat protein. The optimum temperature and pH for the activity of this protease were and pH 7.0. The meat tenderizing activity of the protease from A. oryzae was higher than that of papain and the B. polyfermenticus protease. The fragmentation index of the enzyme-treated with the B. polyfermenticus protease was higher than that of the control. A sensory evaluation was not different between meat treated with proteases, but the overall tenderness of enzyme-treated meats was higher than that of the controls. Therefore, the B. polyfermenticus protease, papain, and the A. oryzae protease appear to be suitable for use as meat tenderizers.
meat tenderizer;Bacillus polyfermenticus;protease;tenderness;
 Cited by
Bhaskar, N., Sachindra, N. M., Modi, V. K., Sakhare, P. Z., and Mahendrakar, N. S. (2006) Preparation of proteolytic activity rich ginger powder and evaluation of its tenderizing effect on spent-hen muscles. J. Muscle Foods 17, 174-184. crossref(new window)

Chen, Q. H., He, G. Q., Jiao, Y. C., and Ni, H. (2006) Effects of elastase from a Bacillus strain on the tenderization of beef meat. Food Chem. 98, 624-629. crossref(new window)

Choi, Y. S., Choi, J. H., Han, D. J., Kim, H. Y., Lee, M. A., Jeong, J. Y., Chung, H. J., and Kim, C. J. (2010) Effects of replacing pork back fat with vegetable oils and rice bran fiber on quality of reduced-fat frankfurters. Meat Sci. 84, 557-563. crossref(new window)

Christensen, M., Larsen, L. M., Ertbjerg, P., and Purslow, P. P. (2004) Effect of proteoytic enzyme activity and heating on the mechanical properties of bovine single muscle fibres. Meat Sci. 66, 361-369. crossref(new window)

Gerelt, B., Ikeuchi, Y., and Suzuki, A. (2000) Meat tenderization by proteolytic enzymes after osmotic dehydration. Meat Sci. 56, 311-318. crossref(new window)

Han, S. K. and Chin, K. B. (2004) Study on meat tenderness of a protease extracted from domestic pear. Korean J. Food Sci. Ani. Resour. 24, 326-328.

Jun, K. D., Kim, H. J., Lee, K. H., Paik, H.-D., and Kang, J. S. (2002) Characterization of Bacillus polyfermenticus SCD as a Probiotic. Korean J. Appl. Microbiol. Biothechnol. 30, 359-366.

Jun, K. D., Lee, K. H., Kim, W. S., and Paik, H.-D. (2000) Microbiological identification of medical probiotic Bispan strain. Korean J. Appl. Microbiol. Biothechnol. 28, 124-127.

Kim, J. M., Choi, J. H., Han, D. J., Choi, Y. S., Jeong, J. Y., Choi, G. H., Paik, H.-D., and Kim, C. J. (2008) Effect of protease produced from Bacillus polyfermenticus SCD on quality of jerky. Food Sci. Biotechnol. 17, 389-395.

Kim, T. H., Lee, N. K., Chang, K. H., Park, E. J., Choi, S. Y., and Paik, H.-D. (2006) Antioxidant activity of partially purified extracts isolated from Bacillus polyfermenticus SCD Culture. Food Sci. Biotechnol. 15, 482-484.

Macfarlane, J. J. (1985) High pressure technology and meat quality. In: Developments in meat science, vol. 3. Lawrie, R. (ed) Applied Science Pub., Elsevier, London, pp. 155-184.

Mestre Prates, J. A., Garcia e Costa, F. J. S., Ribeiro, A. M. R., and Dias Correia, A. A. (2002) Contribution of major structural changes in myofibrils to rabbit meat tenderization during ageing. Meat Sci, 61, 103-113. crossref(new window)

Moller, A. J., Vestergaard, T., and Wismer-Pedersen, J. (1973) Myofibril fragmentation in bovine longissimus dorsi as an index of tenderness. J. Food Sci. 38, 824-825. crossref(new window)

Murao, S., Ohkuni, K., Nagao, M., Hirayama, K., Fukuhara, K., Oda, K., Oyama, H., and Shin, T. (1993) Purification and characterization of Kumamolysin, a novel thermostable pepstatin-insensitive carboxyl proteinase from Bacillus novosp. MN-32. J. Biol. Chem. 268, 349-355.

Naveena, B. M. and Mendiratta, S. K. (2004) The tenderization of buffalo meat using ginger extract. J. Muscle Foods 15, 235-244.

Naveena, B. M., Mendriratta, S. K., and Anhaneyulu, A. S. R. (2004) Tenderization of buffalo meat using plant proteases from Cucumis trigonus Roxb (Kachri) and Zingiber officinale Roscoe (Ginger rhizome). Meat Sci. 68, 363-369. crossref(new window)

Olson, D. G., Parrish, F. C. Jr., and Stromer, M. H. (1976) Myofibril fragmentation and shear resistance of three bovine muscles during postmortem storage. J. Food Sci. 41, 1036-1041. crossref(new window)

Paik, H.-D., Bae, S. S., Park, S. H., and Pan, J. G.. (1997) Identification and partial characterization of tochicin, a bacteriocin produced by Bacillus thuringiensis subsp. Tochingiensis. J. Ind. Microbiol. Biotechnol. 19, 294-298. crossref(new window)

Paik, H.-D., Jung, M. Y., Jung, H. Y., Kim, W. S., and Kim, K. T. (2002) Characterization of Bacillus polyfermenticus SCD for oral bacteriotherpy of gastrointestinal disorders. Korean J. Food Sci. Technol. 34, 73-78.

Park, E. J., Kim, K. T., Kim, C. J., Kim, C. H., and Paik, H.-D. (2004) Anticarcinogenic and antigenotoxic effects of Bacillus polyfermenticus. J. Microbiol. Biotechnol. 14, 852-858.

Park, E. J., Park, J. S., and Paik, H.-D. (2004) Effect of Bacillus polyfermenticus SCD and its baceriocin on MNNG-induced DNA damage. Food Sci. Biotechnol. 13, 684-688.

Pietrasik, Z. and Shand, P. J. (2005) Effects of mechanical treatments and moisture enhancement on the processing characteristics and tenderness of beef semimembranosus roasts. Meat Sci. 71, 498-505. crossref(new window)

Prusa, K. J., Chambers, E. IV, Bowers, J. A., Cunningham, F., and Dayton, A. D. (1981) Thiamin content, texture, and sensory evaluation of postmortem papain-injected chicken. J. Food Sci. 46, 1684-1686. crossref(new window)

SAS Institute, Inc. (2008) SAS User's Guide. SAS Institute Inc., Cary, NC, USA.

Soltanizadeh, N., Kadivar, M., Keramat, J., and Fazilati, M. (2008) Comparison of fresh beef and camel meat proteolysis during cold storage. Meat Sci. 80, 892-895. crossref(new window)

Sheard, P. R., Nute, G. R., Richardson, R. I., and Wood, J. D. (2005) Effects of breed and marination on the sensory attributes of pork from Large White and Hampshire-sired pigs. Meat Sci. 70, 699-707. crossref(new window)

Tappel, A. L., Miyada, D. S., Sterling, C., and Maier, V. P. (1956) Meat tenderization. II. Factors affecting the tenderization of beef by papain. J. Food Sci. 21, 375-383. crossref(new window)

Ward, O. P. (1985) Proteolytic enzymes. In: Comprehensive Biotechnology, vol. 3, Moo-Young, M. (ed) Pergamon Press, Oxford, pp. 789-818.