Advanced SearchSearch Tips
Physiological Characteristics and Production of Vitamin K2 by Lactobacillus fermentum LC272 Isolated from Raw Milk
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Physiological Characteristics and Production of Vitamin K2 by Lactobacillus fermentum LC272 Isolated from Raw Milk
Lim, Sang-Dong; Kim, Kee-Sung; Do, Jeong-Ryong;
  PDF(new window)
In order to develop a new starter culture for fermented milk, Lactobacillus fermentum LC272 was isolated from raw milk and its physiological characteristics were investigated. The vitamin concentration of L. fermentum LC272 was in Rogosa medium and in the reconstituted skim milk. The optimum growth temperature for L. fermentum LC272 was determined to be and it took 24 h for the pH to reach 5.2 under this condition. L. fermentum LC272 was more sensitive to rifampicin relative of the other 15 different antibiotics tested, and showed most resistance to streptomycin. L. fermentum LC272 showed higher activities to leucine arylamidase and acid phosphatase. It was comparatively tolerant to bile juice and acid and displayed high resistance against Salmonella Typhimurium and Staphylococcus aureus with rates of 82.9 and 86.3% respectively. These results demonstrated that L. fermentum LC272 could be an excellent starter culture for fermented milk with high levels of vitamin production.
Lactobacillus fermentum;vitamin ;physiological characteristics;fermented milk;
 Cited by
Physiological Characteristics and GABA Production of Lactobacillus plantarum K255 Isolated from Kimchi,Park, Sun-Young;Kim, Kee-Sung;Lee, Myung-Ki;Lim, Sang-Dong;

한국축산식품학회지, 2013. vol.33. 5, pp.595-602 crossref(new window)
Physiological Characteristics and Anti-obesity Effect of Lactobacillus plantarum Q180 Isolated from Feces,Park, Sun-Young;Cho, Seong-A;Kim, Sae-Hun;Lim, Sang-Dong;

한국축산식품학회지, 2014. vol.34. 5, pp.647-655 crossref(new window)
Physiological Characteristics and Anti-obesity Effect of Lactobacillus plantarum Q180 Isolated from Feces, Korean Journal for Food Science of Animal Resources, 2014, 34, 5, 647  crossref(new windwow)
Physiological Characteristics and GABA Production of Lactobacillus plantarum K255 Isolated from Kimchi, Korean Journal for Food Science of Animal Resources, 2013, 33, 5, 595  crossref(new windwow)
Effect of Lactobacillus plantarum FH185 on the Reduction of Adipocyte Size and Gut Microbial Changes in Mice with Diet-induced Obesity, Korean Journal for Food Science of Animal Resources, 2015, 35, 2, 171  crossref(new windwow)
The probiotic characteristics and GABA production of Lactobacillus plantarum K154 isolated from kimchi, Food Science and Biotechnology, 2014, 23, 6, 1951  crossref(new windwow)
Booth, I. R. (1985) Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 49, 359-378.

Clark, P. A., Cotton, L. N., and Martin, J. H. (1993) Selection of bifidobacteria for use as dietary adjuncts in cultured dairy foods: II-Tolerance to simulated pH of Human Stomachs. Cultured Dairy Products J. 28, 11-14.

Collins, M. D. and Jones, D. (1981) Distribution of isoprenoid quinine structural types in bacteria and their taxonomic implication. Microbiol. Rev. 45, 316-354.

Gilliland, S. E. and Speck, M. L. (1977) Antagonistic action of Lactobacillus acidophilus toward intestinal and foodborne pathogens in associative cultures. J. Food Prot. 40, 820-823.

Gilliland, S. E. and Walker, D. K. (1990) Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in humans. J. Dairy Sci. 73, 905-911. crossref(new window)

Hart, J. P., Sheaver, M. J., Klenerman, L., Catterall, A., Reeve, J., Sambrook, P. N., Dodds, R., A., Bitenky, and Chayen, J. (1985) Electrochemical detection of depressed circulating levels of vitamin $K_{1}$ in osteoporosis. J. Clin. Endocrinol. Metab. 60, 1268-1269. crossref(new window)

Hauschka, P. V., Lian, J. B., and Gallop, P. M. (1975) Direct identification of the calcium binding amino acid, $\gamma$-carboxy-glutamate, in mineralized tissues. Proc. Natl. Acad. Sci. USA 72, 3925-3929. crossref(new window)

Hauschka, P. V. and Carr, S. A. (1982) Calcium-dependent $\alpha$-helical structure in osteocalcin. Biochem. 21, 2538-2547. crossref(new window)

Hauschka, P. V. and Reid, M. L. (1978) Vitamin K dependence of a calcium-binding protein containing gamma-carboxyglutamic acid in chicken bone. J. Biol. Chem. 253, 9063-9068.

Hojo, K., Watanabe, R., Mori, T., and Taketomo, N. (2007) Quantitative measurement of tetrahydromenaquinone-9 in cheese fermented by propionibacteria. J. Dairy Sci. 90, 4078-4083. crossref(new window)

Iwamoto, J., Takeda, T., and Sato, Y. (2004) Effects of vitamin $K_{2}$ on osteoporosis. Curr. Pharm. Des. 10, 2557-2576. crossref(new window)

Knapen, M. H. J., Hamulyak, K., and Vermeer, C. (1989) The effect of vitamin K supplementation on circulating osteocalcin (bone gla protein) and urinary calcium excretion. Ann. Intern. Med. 111, 1001-1005. crossref(new window)

Lim, S. D., Kim, K. S., Cho, S. A., and Do, J. R. (2010) Physiological Characteristics and Immunomodulating Activity by Lactobacillus paracasei subsp. paracasei BFI46 Isolated from New-Born Infant Feces. Korean J. Food Sci. Ani. Resour. 30, 223-231. crossref(new window)

Matsumoto, M., Ohishi, H., and Benno, Y. (2004) $H^{+}$ - ATPase activity in bifidobacterium with special reference to acid tolerance. Int. J. Food Microbiol. 93, 109-113. crossref(new window)

Maragkoudakis, P. A., Zoumpopoulou, G., Miaris, C., Kalantzopoulos, G., Pot, B., and Tsakalidou, T. (2006) Probiotic potential of Lactobacillus strains isolated from dairy products. Int. Dairy J. 16, 189-199. crossref(new window)

Mcdonald, L. C., Fleming, H. P., and Hassan, H. M. (1990) Acid tolerance of Leuconostoc mesenteroides and Lactobacillus casei. Appl. Environ. Microbiol. 53, 2124-2128.

Morishita, T., Tamura, N., Makino, T., and Kudo, S. (1999) Production of manaquinones by lactic acid bacteria. J. Dairy Sci. 82, 1897-1903. crossref(new window)

Parente, E. and Ricciardi, A. (1999) Production, recovery and purifications of bacteriocins from lactic acid bacteria. Appl. Microbiol. Biotechnol. 52, 628-638. crossref(new window)

Price, P. A. (1985) Vitamin K-dependent formation of bone gla protein (osteocalcin) and its function. Vitam. Horm., 42, 65-108. crossref(new window)

Price, P. A., Otsuka, A. S., Poser, J. W., Kristaponis, J., and Raman, N. (1976) Characterization of a gamma-carboxyglutamic acid-containing protein from bone. Proc. Natl. Acad. Sci. USA 73, 1447-1451. crossref(new window)

Purves, E. (2005) Neonatal hematologic disorders. J. Pediatr. Oncol. Nurs. 22, 168-175. crossref(new window)

Shearer, M. J. (1990) Vitamin K and vitamin K-dependent proteins. Br. J. Haematol. 75, 156-162. crossref(new window)

Succi, M., Tremonte, P., Reale, A., Sorrentino, E., Grazia, L., and Pacifico, S. (2005) Bile salt and acid tolerance of Lactobacillus rhamnosus strains isolated from Parmigiano Reggiano cheese. FEMS Microbiol. Lett. 244, 129-137. crossref(new window)

Tani, T. and Taguchi, H. (1989) Extracellular production of menaquinone-4 by mutant of Flavobacterium sp. 238-7 with a detergent supplemented culture. J. Ferment. Bioeng. 67, 102-106. crossref(new window)

Tsukamoto, Y., Kasai, M., and Kakuda, H. (2001) Construction of a Bacillus subtilis (natto) with high productivity of vitamin $K_{2}$ (Menaquinone-7) by analog resistance. Biosci. Biotechnol. Biochem. 65, 2007-2015. crossref(new window)

Ventura, M., Canchaya, C., van Sinderen, D., Fitzgerald, G. F., and Zink, R. (2004) Bifidobacterium lactis DSM 10140: identification of the atp (atpBEFHAGDC) operon and analysis of its genetic structure, characteristics, and phylogeny. Appl. Environ. Microbiol. 70, 3110-3121. crossref(new window)