Advanced SearchSearch Tips
Acid Resistance of Cronobacter sakazakii
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Acid Resistance of Cronobacter sakazakii
Jang, Sung-Ran; Bang, Woo-Suk;
  PDF(new window)
The objective of this study was to determine the resistance of Cronobacter sakazakii in acidic environments. The D-values of CAFM2 (ATCC 29544), EB 1, EB 5, and EB 41 at pH 2.5 in TSB were significantly (p<0.05) higher when cells were adapted at pH 4.5 in TSB for 5-h then when cells were not adapted at pH 4.5 in TSB. The D-values of CAFM2, EB1, and EB 41 at pH 2.5 in TSB were significantly (p<0.05) higher when cells were adapted at pH 4.5 in TSB for 10-h then when cells were not adapted at pH 4.5 in TSB. The D-values of CAFM2 and EB1 at pH 2.5 in TSB were significantly (p<0.05) higher when cells were adapted at pH 4.5 in TSB for 24-h then when cells were not adapted at pH 4.5 in TSB. The adaptation of C. sakazakii to mild acidic environments may result in increased resistance to severe acidic environments. The D-values of all test strains at pH 2.5 in TSB were significantly (p<0.05) higher when cells were cultured at pH 4.5 then when they were cultured at pH 7.2 in TSB. These data indicate that cells cultured in mildly acidic environments may result in increased resistance to severe acidic environments. The acid adaptation of C. sakazakii showed an increased resistance to acidic environments. The acid adaptation response of C. sakazakii has important implications for food safety, which should be considered when food preservation measures are developed.
Cronobacter sakazakii;acid environment;response of acid adaptation;acid resistance;
 Cited by
Acid stress management by Cronobacter sakazakii, International Journal of Food Microbiology, 2014, 178, 21  crossref(new windwow)
Bang, W. and Drake, M. A. (2005) Acid adaptation of Vibrio vulnificus and subsequent impact on stress tolerance. Food Microbiol. 22, 301-309. crossref(new window)

Bar-Oz, B., Preminger, A., Peleg, O., Block, C., and Arad, I. (2001) Enterobacter sakazakii infection in the newborn. Acta Paediatr. 90, 356-358. crossref(new window)

Beales, N. (2004) Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress : a review. Comp. Rev. Food Sci. F. 3, 1-20. crossref(new window)

Breeuwer, P., Lardeau, A., Peterz, M., and Joosten, H. M. (2003) Desiccation and heat tolerance of Enterobacter sakazakii. J. Appl. Microbiol. 95, 967-973. crossref(new window)

Brown, J. L., Ross, T., McMeekin, T. A., and Nichols, P. D. (1997) Acid habituation of Escherichia coli and the potential role of cyclopropane fatty acids in low pH tolerance. Int. J. Food Microbiol. 37, 163-173. crossref(new window)

Burdette, J. H. and Santos, C. (2000) Enterobacter sakazakii brain abscess in the neonate : the importance of neuroradiologic imaging. Pediatr. Radiol. 30, 33-34. crossref(new window)

Cheng, H. Y. and Chou, C. C. (2001) Acid adaptation and temperature effect on the survival of Escherichia coli O157: H7 in acidic fruit juice and lactic fermented milk product. J. Food Microbiol. 70, 189-195. crossref(new window)

Cheng, H. Y., Yu, R. C., and Chou, C. C. (2003) Increased acid tolerance of Escherichia coli O157:H7 as affected by acid adaptation time and conditions of acid challenge. J. Food Res. Int. 36:49-56. crossref(new window)

Cottyn, B., Regalado, E., Lannot, B., de Cleene, M., Mew, T. W., and Swings, J. (2001) Bacteria populations associated with rice seed in the tropical environment. J. Phytopathol. 91, 282-292. crossref(new window)

Dancer, G. I., Mah, J. H., Rhee, M. S., Hwang, I. G., and Kang, D. H. (2009) Resistance of Enterobacter sakazakii (Cronobacter spp.) to environmental stresses. J. Appl. Microbiol. 107, 1606-1614 crossref(new window)

Davis, M. J., Coote, P. J., and O'Byrne, C. P. (1996) Acid tolerance in Listeria monocytogenes : the adaptive acid tolerance response (ATR) and growth phase-dependent acid resistance. J. Microbiol. 142, 2975-2982. crossref(new window)

De Angelis, M. and Gobbetti, M. (2004) Environmental stress responses in Lactobacillus: a review. Proteomics 4, 106-122. crossref(new window)

Edelson-Mammel, S. G., Porteous, M. K., and Buchanan, R. L. (2005) Survival of Enterobacter sakazakii in dehydrated powdered infant formula. J. Food Prot. 68, 1900-1902.

Edelson-Mammel, S. G., Porteous, M. K., and Buchannan, R.L. (2006) Acid resistance of twelve strains of Enterobacter sakazakii, and the impact of habituating the cells to an acidic environment. J. Food Sci. 71, 201-207. crossref(new window)

Farber, J. M. and Forsythe, S. J. (2008) Enterobacter sakazakii. ASM press, Washington DC, USA, pp. 15-19.

Ferreira, A., Sue, D., O'Byrne, C. P., and Boor, K. J. (2003) Role of Listeria monocytogenes $\sigma^{B}$ in survival of lethal acidic conditions and in the acquired acid tolerance response. Appl. Environ. Microbiol. 69, 2692-2698. crossref(new window)

Flahaut, S., Hartke, A., Giard, J. C., Benachour, A., Boutibonnes, P., and Auffray, Y. (1996) Relationship between stress response toward bile salts, acid and heat treatment in Enterococcus faecalis. FEMS Microb. Lett. 138, 49-54. crossref(new window)

Foster, J. W. (1991) Salmonella acid shock proteins are required for the adaptive acid tolerance response. J. Bacteriol. 173, 6896-902.

Foster, J. W. (2000) Microbial responses to acid stress. In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. ASM Press, Washington DC, USA, pp. 99-116.

Foster, J. W. and Hall, H. K. (1991) Inducible pH homeostasis and the acid tolerance response of Salmonella thyphimurium. J. Bacteriol. 173, 5129-5135.

Gahan, C. G. M., O'Driscoll, B., and Hill, C. (1996) Acid adaptation of Listeria monocytogenes can enhance survival in acidic foods and during milk fermentation. Appl. Environ. Microb. 62, 3128-3132.

Garren, D. M., Harrison, M. A., and Russell, S. M. (1997) Retention of acid tolerance and acid shock responses of Escherichia coli O157:H7 andnon-O157:H7 isolates. J. Food Prot. 60, 1478-1482.

Hawkins, R. E., Lissner, C. R., and Sanford, J. P. (1991) Enterobacter sakazakii bacteremia in an adult. South. Med. J. 84, 793-795. crossref(new window)

Hengge-Aronis, R. (2002) Signal transduction and regulatory mechanisms involved in control of the sigma S (rpoS) subunit of RNA polymerase. Microbiol. Mol. Biol. Rev. 66, 373-395. crossref(new window)

Himelright, I., Harris, E., Lorch, V., and Anderson, M. (2002) Enterobacter sakazakii infections associated with the use of powdered infant formula - Tennessee, 2001. J. Am. Med. Assoc. 287, 2204-2205. crossref(new window)

Ibrahim, S. A., Salameh, M. M., Seo, C. W., Tse, T. S. F., and Yang, H. (2005) Acid resistance of Enterobacter sakazakii. IFT Annual Meeting July 15-20 - New Orleans, Louisiana. Session 89-E.

Isonhood, J. H., Gerard, P. D., Leenanon, B., and Drake, M. A. (2002) Stress responses of Aeromonas hydrophila following environmental challenges. J. Food Microbiol. 19, 285-293. crossref(new window)

Jimenez, E. B. and Gimenez, C. (1982) Septic shock due to Enterobacter sakazakii. Clin. Microbiol. Newsl. 4, 30. crossref(new window)

Kandhai, M. C., Reij, M. W., Gorris, L. G., Guillaume-Gentil, O., and van Schothorst, M. (2004) Occurrence of Enterobacter sakazakii in food production environments and households. Lancet 363, 39-40. crossref(new window)

Kim, S. A., Lee, Y. M., Oh, S. W., Gwak, H. S., Hwang, I. G., Kang, D. H., Woo, G. J., and Rhee, M. S. (2009) Biofilm formation and low pH viability of Cronobacter spp. (Enterobacter sakazakii) isolated from powdered infant formula and infant foods in Korea. Korea J. Food Sci. 29, 702-708.

Leenanon, B. and Drake, M. A. (2001) Acid stress, starvation, and cold stress affect poststress behavior of Escherichia coli O157:H7 and nonpathogenic Escherichia coli. J. Food Prot. 64, 970-974.

Leyer, G. J., Wang, L. L., and Johnson, E. A. (1995) Acid adaptation of Escherichia coli O157:H7 increases survival in acidic foods. Appl. Environ. Microb. 61, 3752-3755.

Leyer, G. L. and Johnson, E. A. (1993) Acid adaptation induces cross protection against environmental stresses in Salmonella Typhimurium. Appl. Environ. Microb. 59, 1842-1847.

Loewen, P. C., Hu, B., Strutinsky, J., and Sparling, R. (1998) Regulation in the rpoS regulon of Escherichia coli. Can. J. Microbiol. 44, 707-717. crossref(new window)

Nazarowec-White, M. and Farber, J. M. (1997) Incidence, survival, and growth of Enterobacter sakazakii in infant formula. J. Food Prot. 60, 226-230.

Neelam, M., Nawaz, Z., and Riazuddin, S. (1987) Hydrocarbon bio degradation biochemical characterization of bacteria isolated from local soils. Pak. J. Sci. Ind. Res. 30, 382-385.

Park, Y. K., Bearson, B., Bang, S. H., Bang, I. S., and Foster, J. W. (1996) Internal pH crisis, lysine decarboxylase and the acid tolerance response of Salmonella typhymurium. J. Mol. Microbiol. 20, 605-611. crossref(new window)

Richards, G. M., Gurtler, J. B., and Beuchat, L. R. (2005) Survival and growth of Enterobacter sakazakii in infant rice cereal reconstituted with water, milk, lipid infant formula or apple juice. J. Appl. Microbiol. 99, 844-850. crossref(new window)

Robert, K., Deborah, A. S., and Antonio, T. (1993) The stationary phase of the bacterial life cycle. Ann. Rev. Microbiol. 47, 855-874. crossref(new window)

Ryu, J. H. and Beuchat, L. R. (1998) Influence of acid tolerance responses on survival growth and thermal cross protection of Escherichia coli O157:H7 in acidified media and fruits juices. Int. J. Food Microbiol. 45, 185-193. crossref(new window)

Sanders, J. W., Venema, G., and Kok, J. (1999) Environmental stress response in Lactococcus lactis. FEMS Microbiol. Rev. 23, 483-501. crossref(new window)

Soriano, J. M., Rico, H., Molto, J. C., and Manes, J. (2001) Incidence of microbial flora in lettuce, meat and Spanish potato omelette from restaurants. J. Food Microbiol. 18, 159-163.

Tsai, Y. W. and Ingham, S. C. (1997) Survival of Escherichia coli O157:H7 and Salmonella spp. in acidic condiments. J. Food Prot. 60, 751-755.

Van Acker, J., de Smet, F., Muyldermans, G., Bougatef, A., Naessens, A., and Lauwer, S. (2001) Outbreak of necrotizing enterocolitis associated with Enterobacter sakazakii in powdered milk formula. J. Clin. Microbiol. 39, 293-297. crossref(new window)

Wong, H. C., Peng, P. Y., Han, J. M., Chang, C. Y., and Lan, S. L. (1998) Effect of mild acid treatment on the survival, enteropathogenicity and protein production in Vibrio parahaemolyticus. Infect. Immun. 66, 3066-3071.