JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Evaluation of Three Candidate Genes Affecting Fatty Acid Composition in Pigs
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Evaluation of Three Candidate Genes Affecting Fatty Acid Composition in Pigs
Maharani, Dyah; Jung, Yeon-kuk; Jo, Cheorun; Jung, Woo-Young; Nam, Ki-Chang; Seo, Kang-Seok; Lee, Seung-Hwan; Lee, Jun-Heon;
  PDF(new window)
 Abstract
The association of three candidate genes, fatty acid synthase (FASN), microsomal triglyceride transfer protein (MTTP) and fatty acid binding protein 3 (FABP3), with fatty acid (FA) composition in Duroc pigs was investigated. Identified single nucleotide polymorphisms (SNPs) were used for polymerase chain reaction-restriction fragment length polymorphism genotyping. The c.265C>T SNP of FASN gene was significantly associated with high levels of palmitoleic acid (C16:1) (p<0.05), oleic acid (C18:1) (p<0.01), and mono-unsaturated fatty acid (MUFA) (p<0.01), but low levels of linoleic acid (C18:2) (p<0.01), alpha linolenic acid (C18:3) (p<0.05), and poly-unsaturated fatty acid (PUFA) (p<0.01) in animals having the CT genotype. The c.2573T>C SNP in the MTTP gene had a significant effect only in elevating the level of palmitoleic acid (C16:1) (p<0.05) in heterozygote animals. The polymorphism in FABP3 showed no significant effects on any fatty acid composition traits. These results suggest that the identified SNPs in the FASN and MTTP genes can be useful markers for selecting Duroc pigs having desirable healthy fatty acid composition.
 Keywords
fatty acid synthase;microsomal triglyceride transfer protein;fatty acid binding protein 3;fatty acid composition;Duroc pig;
 Language
English
 Cited by
1.
Polymorphism of fat metabolism genes as candidate markers for meat quality and production traits in heavy pigs, Meat Science, 2015, 110, 220  crossref(new windwow)
2.
Pig fatness in relation to FASN and INSIG2 genes polymorphism and their transcript level, Molecular Biology Reports, 2016, 43, 5, 381  crossref(new windwow)
 References
1.
Bhuiyan, M. S. A., Yu, S. L., Jeon, J. T., Yoon, D., Cho, Y. M., Park, E. W., Kim, E. W., Kim, K. S., and Lee, J. H. (2009) DNA polymorphisms in SREBF1 and FASN genes affect fatty acid composition in Korean cattle (Hanwoo). Asian-Aust. J. Anim. Sci. 22, 765-773. crossref(new window)

2.
Bou, R., Codony, R., Tres, A., Decker, E. A., and Guardiola, F. (2009) Dietary strategies to improve nutritional value, oxidative stability, and sensory properties of poultry products. Crit. Rev. Food Sci. Nutr. 49, 800-822. crossref(new window)

3.
Bronte, S. B., Antonis, A., Eales, L., and Brock, J. F. (1956) Effects of feeding different fats on serum-cholesterol level. Lancet 270, 521-526.

4.
Cartwright, I. J., Plonne, D., and Higgins, J. A. (2000) Intracellular events in the assembly of chylomicrons in rabbit enterocytes. J. Lipid. Res. 41, 1728-1739.

5.
Chen, P., Baas, T. J., Mabry, J. W., Dekkers, J. C., and Koehler, K. J. (2002) Genetic parameters and trends for lean growth rate and its comvonents in U.S. Yorkshire, Duroc, Hampshire, and Landrace pigs. J. Anim. Sci. 80, 2062-2070.

6.
Clop, A., Ovilo, C., Perez-Enciso, M., Cercos, A., Tomas, A., Fernandez, A., Coll, A., Folch, J. M., Barragan, C., Diaz, I., Oliver, M. A., Varona, L., Silio, L., Sanchez, A., and Noguera, J. L. (2003) Detection of QTL affecting fatty acid composition in the pig. Mamm. Genome 14, 650-656. crossref(new window)

7.
Diana, P., Nichols, P. J., and Thompson, J. M. (1998) The effect of sire breed on the melting point and fatty acid composition of subcutaneous fat in steers. J. Anim. Sci. 76, 87-95.

8.
Estelle, J., Sanchez, A., and Folch, J. M. (2005) Assignment of the microsomal triglyceride transfer protein large subunit (MTP) gene to porcine chromosome 8. Anim. Genet. 36, 354-355. crossref(new window)

9.
Estelle, J., Fernandez, A. I., Perez-Enciso, M., Fernandez, A., Rodriguez, C., Sanchez, A., Noguera, J. L., and Folch, J. M. (2009) A non-synonymous mutation in a conserved site of the MTTP gene is strongly associated with protein activity and fatty acid profile in pigs. Anim. Genet. 40, 813-820. crossref(new window)

10.
Filer, L. J., Fomon, S. J., Anderson, T. A., Nixt, T. L., and Andersen, D. W. (1974) Effects of age, sex, and diet upon carcass and liver fatty acid composition of Pitman-Moore miniature pigs. Lipids 9, 536-540. crossref(new window)

11.
Folch, J., Lees, M. and Stanley, G. H. S. (1957) A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497-509.

12.
Gallardo, D., Quintanilla, R., Varona, L., Diaz, I., Ramirez, O., Pena, R. N., and Amills, M. (2009) Polymorphism of the pig acetyl-coenzyme A carboxylase alpha gene is associated with fatty acid composition in a Duroc commercial line. Anim. Genet. 40, 410-417. crossref(new window)

13.
Gerbens, F., Rettenberger, G., Lenstra, J. A., Veerkamp, J. H., and te Pas, M. F. (1997) Characterization, chromosomal localization, and genetic variation of the porcine heart fatty acid-binding protein gene. Mamm. Genome 8, 328-332. crossref(new window)

14.
Gordon, D. A., Wetterau, J. R., and Gregg, R. E. (1995) Microsomal triglyceride transfer protein: a protein complex required for the assembly of lipoprotein particles. Trends Cell. Biol. 5, 317-321. crossref(new window)

15.
Horrocks, L. A. and Yeo, Y. K. (1999) Health benefits of docosahexaenoic acid (DHA). Pharmacol. Res. 40, 211-225. crossref(new window)

16.
Hussain M. M., Shi, J., and Dreizen, P. (2003) Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J. Lipid Res. 44, 22-32. crossref(new window)

17.
Jayakumar, A., Chirala, S. S., Chinault, A. C., Baldini, A., Abu-Elheiga, L., and Wakil, S. J. (1994) Isolation and chromosomal mapping of genomic clones encoding the human fatty acid synthase gene. Genomics 23, 420-424. crossref(new window)

18.
Jung S., Choe, J. H., Kim, B., Yun, H., Kruk, Z. A., and Jo, C. (2010) The effect of dietary mixture of gallic acid and linoleic acid on antioxidative potential and quality of breast meat from broilers. Meat Sci. 86, 520-526. crossref(new window)

19.
Keys, A., Grande, F., and Anderson, J. T. (1974) Bias and Misrepresentation revisited: perspective in saturated fat. Am. J. Clin. Nutr. 27, 188-212.

20.
Kim, Y., Kong, M., Nam, Y. J., and Lee, C. (2006) A quantitative trait locus for oleic fatty acid content on Sus scrofa chromosome 7. J. Hered. 97, 535-537. crossref(new window)

21.
Kim, J. H., Hwangbo, J., Choi, N. J., Park, H. G., Yoon, D. H., Park, W., Lee, S. H., Park, B. K., and Kim, Y. F. (2007) Effect of dietary supplementation with conjugated linoleic acid, with oleic, linoleic, or linolenic acid, on egg quality characteristics and fat accumulation in the egg yolk. Poultry Sci. 86, 1180-1186. crossref(new window)

22.
Kim, S. W., Choi, Y. I., Choi, J. S., Kim, J. J., Choi, B. H., Kim, T. H., and Kim, K. W. (2011) Porcine fatty acid synthase gene polymorphisms are associated with meat quality and fatty acid composition. Korean J. Food Sci. An. 31, 356-365. crossref(new window)

23.
Lee, S. H., Choi, Y. M., Choe, J. H., Kim, J. M., Hong, K. C., Park, H. C., and Kim, B. C. (2010) Association between polymorphisms of the heart fatty acid binding protein gene and intramuscular fat content, fatty acid composition, and meat quality in Berkshire breed. Meat Sci. 86, 794-800. crossref(new window)

24.
Lichtenstein, A. H. (2006) Thematic review series: patientoriented research. Dietary fat, carbohydrate, and protein: effects on plasma lipoprotein patterns. J. Lipid Res. 47, 1661-1667. crossref(new window)

25.
Lowe, B. K., Clark, D. L., Boler, D. D., Dilger, A. C., McKeith, F. K., Eggert, J. M., Newcom, D. W., and Killefer, J. (2011) Characterization of loin shape from Duroc and Duroc composite finishing gilts. Meat Sci. 87, 146-150. crossref(new window)

26.
Lu, S., Huffman, M., Yao, Y., Mansbach, C. M., Cheng, X., Meng, S., and Black, D. D. (2002) Regulation of MTP expression in developing swine. J. Lipid Res. 43, 1303-1311.

27.
Luevano, K. E., Gonzalez, J. R., Perea, F. J., and Magana, M. T. (2009) Linkage disequilibrium between four MTTP gene polymorphisms in a Mexican population. Ann. Hum. Biol. 36, 211-219. crossref(new window)

28.
Matsuhashi, T., Maruyama, S., Uemoto, Y., Kobayashi, N., Mannen, H., Abe, T., Sakaguchi, S., and Kobayashi, E. (2010) Effects of FASN, SCD, SREBP1 and GH gene polymorphisms on fatty acid composition and carcass traits in Japanese Black cattle. J. Anim. Sci. 89, 12-22. crossref(new window)

29.
Matthews, K. R., Homer, D. B., Thies, F., and Calder, P. C. (2000) Effect of whole linseed (Linum usitatissimum) in the diet of finishing pigs on growth performance and on the quality and fatty acid composition of various tissues. Br. J. Nutr. 83, 637-643. crossref(new window)

30.
Munoz, G., Ovilo, C., Noguera, J. L., Sanchez, A., Rodriguez, C., and Silio, L. (2003) Assignment of the fatty acid synthase (FASN) gene to pig chromosome 12 by physical and linkage mapping. Anim. Genet. 34, 234-235. crossref(new window)

31.
Narukami, T., Sasazaki, S., Oyama, K., Nogi, T., Taniguchi, M., and Mannen, H. (2011) Effect of DNA polymorphisms related to fatty acid composition in adipose tissue of Holstein cattle. Anim. Sci. J. 82, 406-411. crossref(new window)

32.
Roy, R., Zaragoza, P., Gautier, M., Eggen, A., and Rodellar, C. (2005) Radiation hybrid and genetic linkage mapping of two genes related to fat metabolism in cattle: fatty acid synthase (FASN) and glycerol-3-phosphate acyltransferase mitochondrial (GPAM). Anim. Biotechnol. 16, 1-9. crossref(new window)

33.
Suzuki K., Ishida M., Kadowaki H., Shibata T., Uchida H., and Nishida A. (2006) Genetic correlations among fatty acid compositions in different sites of fat tissues, meat production, and meat quality traits in Duroc pigs. J. Anim. Sci. 84, 2026-2034. crossref(new window)

34.
Veerkamp, J. H. and Maatman, R. G. (1995) Cytoplasmic fatty acid-binding proteins: their structure and genes. Prog. Lipid Res. 34, 17-52. crossref(new window)

35.
Wilson, E. R. and Johnson, R. K. (1981) Comparison of three-breed and backcross swine for litter productivity and post weaning performance. J. Anim. Sci. 52, 18-25.

36.
Wood, J. D., Enser, M., Fisher, A. V., Nute, G. R., Sheard, P. R., Richardson, R. I., Hughes, S. I., and Whittington, F. M. (2008) Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 78, 343-358. crossref(new window)

37.
Woollett, L. A., Spady, D. K., and Dietchy, J. M. (1992) Saturated and unsaturated fatty acid independently regulate low density lipoprotein receptor activity and production rate. J. Lipid Res. 33, 77-88.

38.
Yang, Z. T., Zhang, X. X., Kong, X. F., Zhang, D. H., Zhang, S. Y., Jiang, J. H., Gong, Q. M., Jin, G. D., and Lu, Z. M. (2008) Polymorphisms of microsomal triglyceride transfer protein in different hepatitis B virus-infected patients. World J. Gastroenterol. 14, 5454-5460. crossref(new window)

39.
Zhang, S., Knight, T. J., Reecy, J. M., and Beitz, D. C. (2008) DNA polymorphisms in bovine fatty acid synthase are associated with beef fatty acid composition. Anim. Genet. 39, 62-70. crossref(new window)

40.
Zhang, S., Knight, T. J., Stalder, K. J., Goodwin, R. N., Lonergan, S. M., and Beitz, D. C. (2009) Effects of breed, sex and halothane genotype on fatty acid composition of triacylglycerols and phospholipids in pork longissimus muscle. J. Anim. Breed Genet. 126, 259-268. crossref(new window)