JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effects of High Pressure/High Temperature Processing on the Recovery and Characteristics of Porcine Placenta Hydrolysates
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of High Pressure/High Temperature Processing on the Recovery and Characteristics of Porcine Placenta Hydrolysates
Lee, Mi-Yeon; Choi, Ye-Chul; Chun, Ji-Yeon; Min, Sang-Gi; Hong, Geun-Pyo;
  PDF(new window)
 Abstract
This study was performed to investigate the effects of high pressure/high temperature (HPHT) treatment on the recovery efficiency and characteristics of porcine placenta hydrolysates. The placenta hydrolysates were characterized by solubility, free amino acid contents, gel electrophoresis, gel permeation chromatography (GPC) and amino acid composition. Placenta was treated at 37.5 MPa of pressure combined with various temperatures (150, 170, and ) or various holding times (0, 30, and 60 min at ). Insoluble raw placenta collagen was partially solubilized (> 60% solubility) by the HPHT treatment. Free amino group content of placenta collagen was increased from 0.1 mM/g collagen to > 0.3 mM/g collagen after HPHT treatment, reflecting partial hydrolysis of collagen. The molecular weight () distribution showed evidence of collagen hydrolysis by shifting of peaks toward low molecular weight when treated temperature or holding time was increased. Alanine (Ala), glycine (Gly), hydroxyproline (Hyp), and proline (Pro) contents increased after the HPHT treatments compared to a decrease in the others. In particular, the increase in Gly was obvious, followed by Hyp and Pro, reflecting that placenta hydrolysates were mainly composed of these amino acids. However, increasing temperature or holding time hardly affected the amino acid compositions. These results indicate that the HPHT treatment is advantageous to hydrolyze collagen derived from animal by-products.
 Keywords
high pressure;high temperature;subcritical water;placenta collagen;hydrolysis;
 Language
English
 Cited by
1.
Effect of High Pressure on the Porcine Placenral Hydrolyzing Activity of Pepsin, Trypsin and Chymotrypsin,;;;;

한국축산식품학회지, 2014. vol.34. 1, pp.14-19 crossref(new window)
2.
Effects of Concentration and Reaction Time of Trypsin, Pepsin, and Chymotrypsin on the Hydrolysis Efficiency of Porcine Placenta,;;;;;

한국축산식품학회지, 2014. vol.34. 2, pp.151-157 crossref(new window)
3.
Effect of Sub- and Super-critical Water Treatment on Physicochemical Properties of Porcine Skin,;;;;;

한국축산식품학회지, 2015. vol.35. 1, pp.35-40 crossref(new window)
4.
Effect of Porcine Collagen Peptides on the Rheological and Sensory Properties of Ice Cream,;;;;;

한국축산식품학회지, 2015. vol.35. 2, pp.156-163 crossref(new window)
5.
Effects of Ethanol Addition on the Efficiency of Subcritical Water Extraction of Proteins and Amino Acids from Porcine Placenta,;;;;;

한국축산식품학회지, 2015. vol.35. 2, pp.265-271 crossref(new window)
6.
Effect of Soy Protein Hydrolysates Prepared by Subcritical Water Processing on the Physicochemical Properties of Pork Patty during Chilled Storage,;;;;

한국축산식품학회지, 2015. vol.35. 4, pp.557-563 crossref(new window)
7.
Effects of Soy Protein Hydrolysates Prepared by Varying Subcritical Media on the Physicochemical Properties of Pork Patties,;;;;

한국축산식품학회지, 2016. vol.36. 1, pp.8-13 crossref(new window)
1.
Effect of High Pressure on the Porcine Placenral Hydrolyzing Activity of Pepsin, Trypsin and Chymotrypsin, Korean Journal for Food Science of Animal Resources, 2014, 34, 1, 14  crossref(new windwow)
2.
Effect of Soy Protein Hydrolysates Prepared by Subcritical Water Processing on the Physicochemical Properties of Pork Patty during Chilled Storage, Korean Journal for Food Science of Animal Resources, 2015, 35, 4, 557  crossref(new windwow)
3.
Effect of Sub- and Super-critical Water Treatment on Physicochemical Properties of Porcine Skin, Korean Journal for Food Science of Animal Resources, 2015, 35, 1, 35  crossref(new windwow)
4.
Effects of Soy Protein Hydrolysates Prepared by Varying Subcritical Media on the Physicochemical Properties of Pork Patties, Korean Journal for Food Science of Animal Resources, 2016, 36, 1, 8  crossref(new windwow)
5.
Effects of Ethanol Addition on the Efficiency of Subcritical Water Extraction of Proteins and Amino Acids from Porcine Placenta, Korean Journal for Food Science of Animal Resources, 2015, 35, 2, 265  crossref(new windwow)
6.
Effects of Concentration and Reaction Time of Trypsin, Pepsin, and Chymotrypsin on the Hydrolysis Efficiency of Porcine Placenta, Korean Journal for Food Science of Animal Resources, 2014, 34, 2, 151  crossref(new windwow)
7.
Effect of Porcine Collagen Peptides on the Rheological and Sensory Properties of Ice Cream, Korean Journal for Food Science of Animal Resources, 2015, 35, 2, 156  crossref(new windwow)
 References
1.
Ahmad, M., Benjakul, S., and Nalinanon, S. (2010) Compositional and physicochemical characteristics of acid solubilized collagen extracted from the skin of unicorn leatherjacket (Aluterus monoceros). Food Hydrocolloid. 24, 588-594. crossref(new window)

2.
Amashukeli, X., Pelletier, C. C., Kirby, J. P., and Grunthaner, F. J. (2007) Subcritical water extraction of amino acids from Atacama Desert soils. J. Geophys. Res. 112, G04S16. crossref(new window)

3.
AOAC. (1990) Official methods of analysis. 15th ed, Association of Official Analytical Chemists, Washington, DC.

4.
Benjakul, S. and Morrissey, M. T. (1997) Protein hydrolysates from pacific whiting solid wastes. J. Agric. Food Chem. 45, 3423-3430. crossref(new window)

5.
Brunner, G. (2009) Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes. J. Supercritical Fluid. 47, 373-381. crossref(new window)

6.
Denis, A., Brambati, N., Dessauvages, B., Guedj, S., Ridoux, C., Meffre, N., and Autier, C. (2008) Molecular weight determination of hydrolyzed collagens. Food Hydrocolloid. 22, 989-994. crossref(new window)

7.
Dunn, M. S. and Brophy, T. W. (1932) Decomposition points of the amino acids. J. Biol. Chem. 99, 221-229.

8.
Gomez-Guillen, M. C., Gimenez, B., Lopez-Caballero, M. E., and Montero, M. P. (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocolloid. 25, 1813-1827. crossref(new window)

9.
Gu, R. Z., Li, C. Y., Liu, W. Y., Yi, W. X., and Cai, M. Y. (2011) Angiotensin I-converting enzyme inhibitory activity of low-molecular-weight peptides from Atlantic salmon (Salmo salar L.) skin. Food Res. Int. 44, 1536-1540. crossref(new window)

10.
Kim, B. Y., Kim, T., Kang, W. Y., Hyun, B., Cheon, H. Y., and Kim, D. (2010) Functional cosmetic effect of porcine placenta. Korean Chem. Eng. Res. 48, 327-331.

11.
Klomklao, S., Benjakul, S., Visessanguan, W., Kishimura, H., and Simpson, B. K. (2006) Proteolytic degradation of sardine (Sardinella gibbosa) proteins by trypsin from skipjack tuna (Katsuwonus pelamis) spleen. Food Chem. 98, 14-22. crossref(new window)

12.
Laemmli, U. K. (1970) Cleavage of structural proteins during assembly of head of bacteriophage T4. Nature 227, 680-685. crossref(new window)

13.
Liu, D., Liang, L., Regenstein, J. M., and Zhou, P. (2012) Extraction and characterization of pepsin-solubilised collagen from fins, scales, skins, bones and swim bladders of bighead carp (Hypophthalmichthys nobilis). Food Chem. 133, 1441-1448. crossref(new window)

14.
Miller, E. J. (1988) Collagen types: Structure, distribution, and functions. In: Collagen. Nimni, M. E. (ed) Boca Raton, CRC Press, Boca Raton, 1, pp. 139-156.

15.
Montero, P. and Gomez-Guillen, M. C. (2000) Extracting conditions for megrim (Lepidorhombus boscii) skin collagen affect functional properties of the resulting gelatin. J. Food Sci. 65, 434-438. crossref(new window)

16.
Nagarajan, M., Benjakul, S., Prodpran, T., Songtipya, P., and Kishimura, H. (2012) Characteristics and functional properties of gelatin from splendid squid (Loligo formosana) skin as affected by extraction temperatures. Food Hydrocolloid. 29, 389-397. crossref(new window)

17.
Nalinanon, S., Benjakul, S., Kishimura, H., and Osako, K. (2011) Type I collagen from the skin of ornate threadfin bream (Nemipterus hexodon): Characteristics and effect of pepsin hydrolysis. Food Chem. 125, 500-507. crossref(new window)

18.
Nimni, M. E. and Harkness, R. D. (1988) Molecular structure and functions of collagen. In: Collagen. Nimni, M. E. Boca Raton, CRC Press, 1, 1-77.

19.
Sunphorka, S., Chavasiri, W., Oshima, Y., and Ngamprasertsith, S. (2012) Kinetic studies on rice bran protein hydrolysis in subcritical water. J. Supercritical Fluid. 65, 54-60. crossref(new window)

20.
Watchararuji, K., Goto, M., Sasaki, M., and Shotiprunk, A. (2008) Value-added subcritical water hydrolysate from rice bran and soybean meal. Bioresour. Technol. 99, 6207-6213. crossref(new window)

21.
Zhang, Z., Li, G., and Shi, B. (2006) Physicochemical properties of collagen, gelatin and collagen hydrolysate derived from bovine limed split wastes. J. Society Leather Technol. Chem. 90, 23-28.

22.
Zhu, G., Zhu, X., Fan, Q., and Wan, X. (2011) Recovery of biomass wastes by hydrolysis in sub-critical water. Resour. Conserv. Recy. 55, 409-416. crossref(new window)