Advanced SearchSearch Tips
Nano-Calcium Ameliorates Ovariectomy-Induced Bone Loss in Female Rats
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Nano-Calcium Ameliorates Ovariectomy-Induced Bone Loss in Female Rats
Choi, Hyeon-Son; Han, JeungHi; Chung, Seungsik; Hong, Yang Hee; Suh, Hyung Joo;
  PDF(new window)
In this study, we examined the effects of organic types of calcium derived from oyster shell (OS-Ca) and nano-calcium (Nano-Ca) on the bio-availability and physiological responses associated with bone health in ovariectomised rats. Increased body weight, which is one of the physiological effects of ovary removal, was significantly recovered by Nano-Ca treatment (p<0.05). The reduced calcium level in the liver in ovariectomised rat was increased significantly with OS-Ca and Nano-Ca treatment (p<0.05), suggesting improved calcium bio-availability. Alkaline phosphatase (ALP), osteocalcin, and deoxypyridinoline (DPD) were analysed as biochemical markers of bone metabolism and health in the presence or absence of OSCa and Nano-Ca. ALP, osteocalcin, and DPD levels increased following ovary removal and tended to decrease after treatment with Nano-Ca, indicating that Nano-Ca induces favourable bone metabolism. This result was reflected in the recovery of bone mineral density (BMD) and bone mineral content (BMC) of the femur after Nano-Ca treatment following ovary removal. Taken together, our data show that the tested calcium treatments, especially using Nano-Ca, enhanced the bioavailability or absorption of calcium and positively affected bone metabolism in ovariectomised rats.
ovariectomy;nano-calcium;calcium bioavailability;bone metabolism;
 Cited by
패각 칼슘 입자 크기에 따른 흡수율,한정희;최현선;나경수;정승식;서형주;

한국식품영양과학회지, 2014. vol.43. 3, pp.454-458 crossref(new window)
Intestinal Permeability of Oyster Shell Calcium with Different Particle Sizes, Journal of the Korean Society of Food Science and Nutrition, 2014, 43, 3, 454  crossref(new windwow)
Arjmandi, B. H., Birnbaum, R. S., Juma, S., Barengolts, E., and Kukreja, S. C. (2000) The synthetic phytoestrogen, ipriflavone, and estrogen prevent bone loss by different mechanisms. Calcified Tissue Int. 66, 61-65. crossref(new window)

Choi, M. J. (1996) The effect of dietary calcium level on biochemical variables of bone metabolism in ovariectomized female rats. J. East Asian Diet Life 6, 295-305.

Choi, M. J. and Lee, J. (2008) Effects of caffeine on bone mineral density and bone mineral content in ovariectomized rats. Korean J. Nutr. 41, 216-223.

Cui, S., Zhao, Y., Sun, W., Cao, P., and Tang, Q. (2005) Effect of nano pearl powder on the calcium absorption and utilization in rats. Acta Laboratorium Animalis Scientia Sinica 13, 204-207.

Datta, H. K., Ng, W. F., Walker, J. A., Tuck, S. P., and Varanasi, S. S. (2008) The cell biology of bone metabolism. J. Clin. Pathol. 61, 577-587. crossref(new window)

Dawson-Hughes, B., Dallal, G. E., Krall, E. A., Sadowski, L., Sahyoun, N., and Tannenbaum, S. (1990) A controlled trial of the effect of calcium supplementation on bone density in postmenopausal women. New Engl. J. Med. 323, 878-883. crossref(new window)

Fanti, P., Monier-Faugere, M. C., Geng, Z., Schmidt, J., Morris, P. E., Cohen, D., and Malluche, H. H. (1998) The phytoestrogen genistein reduces bone loss in short-term ovariectomized rats. Osteoporosis Int. 8, 274-281. crossref(new window)

Gao, H., Chen, H., Chen, W., Tao, F., Zheng, Y., Jiang, Y., and Ruan, H. (2008) Effect of nanometer pearl powder on calcium absorption and utilization in rats. Food Chem. 109, 493-498. crossref(new window)

Grun, F., and Blumberg, B. (2009) Endocrine disrupters as obesogens. Mol. Cell Endocrinol. 304, 19-29. crossref(new window)

Gueguen, L. and Pointillart, A. (2000) The bioavailability of dietary calcium. J. Am. Coll. Nutr. 19, 119S-136S. crossref(new window)

Hietala, E. L. (1993) The effect of ovariectomy on periosteal bone formation and bone resorption in adult rats. Bone Miner. 20, 57-65. crossref(new window)

Jackson, R. D., LaCroix, A. Z., Gass, M., Wallace, R. B., Robbins, J., Lewis, C. E., Bassford, T., Beresford, S. A., Black, H. R., Blanchette, P., Bonds, D. E., Brunner, R. L., Brzyski, R. G., Caan, B., Cauley, J. A., Chlebowski, R. T., Cummings, S. R., Granek, I., Hays, J., Heiss, G., Hendrix, S. L., Howard, B. V., Hsia, J., Hubbell, F. A., Johnson, K. C., Judd, H., Kotchen, J. M., Kuller, L. H., Langer, R. D., Lasser, N. L., Limacher, M. C., Ludlam, S., Manson, J. E., Margolis, K. L., McGowan, J., Ockene, J. K., O'Sullivan, M. J., Phillips, L., Prentice, R. L., Sarto, G. E., Stefanick, M. L., Van Horn, L., Wactawski-Wende, J., Whitlock, E., Anderson, G. L., Assaf, A. R., and Barad, D. (2006) Calcium plus vitamin D supplementation and the risk of fractures. New Engl. J. Med. 354, 669-683. crossref(new window)

Jacqmain, M., Doucet, E., Despres, J. P., Bouchard, C., and Tremblay, A. (2003) Calcium intake, body composition, and lipoprotein-lipid concentrations in adults. Am. J. Clin. Nutr. 77, 1448-1452.

Kalu, D. N., Liu, C. C., Hardin, R. R., and Hollis, B. W. (1989) The aged rat model of ovarian hormone deficiency bone loss. Endocrinology 124, 7-16. crossref(new window)

Lee, M. R., Park, M. N., Mun, J. Y., and Lee, Y. S. (2011) Effects of a low calcium diet and oxalate intake on calcium deposits in soft tissues and bone metabolism in ovariectomized rats. Korean J. Nutr. 44, 101-111. crossref(new window)

Marie, P. J., Hott, M., Modrowski, D., De Pollak, C., Guillemain, J., Deloffre, P., and Tsouderos, Y. (1993) An uncoupling agent containing strontium prevents bone loss by depressing bone resorption and maintaining bone formation in estrogendeficient rats. J. Bone Miner. Res. 8, 607-615.

Mundy, G. R. and Guise, T. A. (1999) Hormonal control of calcium homeostasis. Clin. Chem. 45, 1347-1352.

Murray, W. S. (1936) Some effects of ovariectomy during the period of declining reproductive powers in mice. J. Exp. Med. 63, 893. crossref(new window)

Nakashima, S., Yoshie, M., Sano, H., and Bahar, A. (2009) Effect of a test dentifrice containing nano-sized calcium carbonate on remineralization of enamel lesions in vitro. J. Oral Sci. 51, 69-77. crossref(new window)

Okazaki, R., Inoue, D., Shibata, M., Saika, M., Kido, S., Ooka, H., Tomiyama, H., Sakamoto, Y., and Matsumoto, T. (2002) Estrogen promotes early osteoblast differentiation and inhibits adipocyte differentiation in mouse bone marrow stromal cell lines that express estrogen receptor (ER) alpha or beta. Endocrinology 143, 2349-2356. crossref(new window)

Ostrowska, Z., Kos-Kudla, B., Marek, B., Kajdaniuk, D., and Ciesielska-Kopacz, N. (2002) Dynamic pattern of IGF-I and chosen biochemical markers of bone metabolism in a rat model of postmenopausal osteoporosis. Endocr. Regul. 36, 9-17.

Prentice, A. (2004) Diet, nutrition and the prevention of osteoporosis. Public Health Nutr. 7, 227-243.

Robins, S. P., Woitge, H., Hesley, R., Ju, J., Seyedin, S., and Seibel, M. J. (1994) Direct, enzyme-linked immunoassay for urinary deoxypyridinoline as a specific marker for measuring bone resorption. J. Bone Miner. Res. 9, 1643-1649.

Ross, A. C., Manson, J. E., Abrams, S. A., Aloia, J. F., Brannon, P. M., Clinton, S. K., Durazo-Arvizu, R. A., Gallagher, J. C., Gallo, R. L., Jones, G., Kovacs, C. S., Mayne, S. T., Rosen, C. J., and Shapses, S. A. (2011) The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: What clinicians need to know. J. Clin. Endocrinol. Metab. 96, 53-58. crossref(new window)

Sikavitsas, V. I., Temenoff, J. S., and Mikos, A. G. (2001) Biomaterials and bone mechanotransduction. Biomaterials 22, 2581-2593. crossref(new window)

Straub, D. A. (2007) Calcium supplementation in clinical practice: A review of forms, doses, and indications. Nutr. Clin. Pract. 22, 286-296. crossref(new window)

Zemel, M. B. (2002) Regulation of adiposity and obesity risk by dietary calcium: Mechanisms and implications. J. Am. Coll. Nutr. 21, 146S-151S. crossref(new window)

Zhao, Y., Cao, R., Ma, D., Zhang, H., Lappe, J., Recker, R. R., and Xiao, G. G. (2011) Efficacy of calcium supplementation for human bone health by mass spectrometry profiling and cathepsin K measurement in plasma samples. J. Bone Miner. Metab. 29, 552-560. crossref(new window)