JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Rapid in vivo Colonization Screening of Probiotic Bacteria Isolated from Human Infants using Caenorhabditis elegans Surrogate Host
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Rapid in vivo Colonization Screening of Probiotic Bacteria Isolated from Human Infants using Caenorhabditis elegans Surrogate Host
Park, Miri; Jeong, Eun-Seon; Oh, Sangnam; Song, Min-Ho; Doo, Jae-Kyun; Jeong, Yong-Seob; Moon, Yong-Il; Kim, Younghoon;
  PDF(new window)
 Abstract
The ability of probiotics to adhere to the intestinal epithelium likely plays an important role in their colonization of the gastrointestinal tract. Here, we performed high-throughput screening (HTS) for suitable characteristics of potential probiotic bacteria using attachment and colonization ability through a C. elegans surrogate in vivo model. A total of 100 strains of lactic acid bacteria (LAB) isolated from infant feces were subjected to the colonization assay using C. elegans intestine. Based on colonization ability, we showed that nine isolates have a high attachment ability during whole experimental periods (up to 168 h), compared to Lactobacillus rhamnosus strain GG as a control. Also, through the use of an in vitro cell attachment model, nine isolates revealed highly binding activity to the mucus layer. Next, the selected 9 isolates were assayed for their survival ability when exposed to acidic and bile conditions as well as cholesterol reduction and the utilization of prebiotic substrates. As a result, the isolated nine strains were determined to be highly resistant to acid and bile conditions. In addition, they have significant activity for the reduction of cholesterol and utilization of several prebiotic substrates as a carbon source. Finally, the selected nine strains were identified by either L. rhamnosus or L. plantarum (4 strains for L. rhamnosus and 5 strains for L. plantarum, respectively). Taken together, we propose that the direct colonization of probiotics using C. elegans may be applicable to the rapid screening of valuable probiotic strains in vivo.
 Keywords
lactic acid bacteria;probiotics;in vivo colonization;Caenorhabditis elegans;
 Language
Korean
 Cited by
1.
알코올 내성 젖산균 P. acidilactici K3와 혼합 발효한 막걸리의 품질 연구,장단비;이현주;표상은;노성운;이진규;이한승;

한국미생물생명공학회지, 2014. vol.42. 4, pp.367-376 crossref(new window)
1.
Bacillus licheniformisIsolated from Traditional Korean Food Resources Enhances the Longevity ofCaenorhabditis elegansthrough Serotonin Signaling, Journal of Agricultural and Food Chemistry, 2015, 63, 47, 10227  crossref(new windwow)
2.
Short communication: In vivo screening platform for bacteriocins using Caenorhabditis elegans to control mastitis-causing pathogens, Journal of Dairy Science, 2016, 99, 11, 8614  crossref(new windwow)
3.
In vitroevaluation of the mucin-adhesion ability and probiotic potential ofLactobacillus mucosaeLM1, Journal of Applied Microbiology, 2014, 117, 2, 485  crossref(new windwow)
 References
1.
Ann, E. Y., Kim, Y., Oh, S., Imm, J. Y., Park, D. J., Han, K. S., and Kim, S. H. (2007) Microencapsulation of Lactobacillus acidophilus ATCC 43121 with prebiotic substrates using a hybridisation system. Int. J. Food Sci. Tech. 42, 411-419. crossref(new window)

2.
Azcarate-Peril, M. A., Tallon, R., and Klaenhammer, T. R. (2009) Temporal gene expression and probiotic attributes of Lactobacillus acidophilus during growth in milk. J. Dairy Sci. 92, 870-886. crossref(new window)

3.
Biedrzycka, E. and Bielecka, M. (2004) Prebiotic effectiveness of fructans of different degrees of polymerization. Trends Food Sci. Tech. 15, 170-175. crossref(new window)

4.
Boris, S., Suarez, J., and Barbes, C. (1997) Characterization of the aggregation promoting factor from Lactobacillus gasseri, a vaginal isolate. J. Appl. Microbiol. 83, 413-420. crossref(new window)

5.
Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77, 71-94.

6.
Coconnier, M. H., Klaenhammer, T., Kerneis, S., Bernet, M., and Servin, A. (1992) Protein-mediated adhesion of Lactobacillus acidophilus BG2FO4 on human enterocyte and mucussecreting cell lines in culture. Appl. Environ. Microb. 58, 2034-2039.

7.
Dambekodi, P. C. and Gilliland, S. E. (1998) Incorporation of cholesterol into the cellular membrane of Bifidobacterium longum. J. Dairy Sci. 81, 1818-1824. crossref(new window)

8.
Erkkila, S. and Petaja, E. (2000) Screening of commercial meat starter cultures at low pH and in the presence of bile salts for potential probiotic use. Meat Sci. 55, 297-300. crossref(new window)

9.
Fang, H., Elina, T., Heikki, A., and Seppo, S. (2000) Modulation of humoral immune response through probiotic intake. FEMS Immunol. Med. Mic. 29, 47-52. crossref(new window)

10.
Gilliland, S., Nelson, C., and Maxwell, C. (1985) Assimilation of cholesterol by Lactobacillus acidophilus. Appl. Environ. Microb. 49, 377-381.

11.
Han, K. S., Imm, J. Y., Oh, S. J., Jeon, W. M., and Kim, S. H. (2002) Characterization and purification of bacteriocin produced by Lactobacillus acidophilus ATCC 4356. Food Sci. Biotechnol. 11, 531-536.

12.
Irazoqui, J. E., Urbach, J. M., and Ausubel, F. M. (2010) Evolution of host innate defence: Insights from Caenorhabditis elegans and primitive invertebrates. Nat. Rev. Immunol. 10, 47-58. crossref(new window)

13.
Kim, J., Chun, J., and Han, H. U. (2000) Leuconostoc kimchii sp. nov., a new species from kimchi. Int. J. Syst. Evol. Micr. 50, 1915-1919.

14.
Kim, Y. and Mylonakis, E. (2012) C. elegans immune conditioning with the probiotic bacterium Lactobacillus acidophilus NCFM enhances Gram-positive immune responses. Infect. Immun. 80, 2600-2508

15.
Kim, Y., Whang, J. Y., Whang, K. Y., Oh, S., and Kim, S. H. (2008) Characterization of the cholesterol-reducing activity in a cell-free supernatant of Lactobacillus acidophilus ATCC 43121. Biosci. Biotech. Biochem. 72, 1483-1490. crossref(new window)

16.
Kirjavainen, P. V., Apostolou, E., Arvola, T., Salminen, S. J., Gibson, G. R., and Isolauri, E. (2001) Characterizing the composition of intestinal microflora as a prospective treatment target in infant allergic disease. FEMS Immunol. Med. Mic. 32, 1-7. crossref(new window)

17.
Kleesen, B., Hartmann, L., and Blaut, M. (2001) Oligofructose and long-chain inulin: influence on the gut microbial ecology of rats associated with a human faecal flora. Brit. J. Nutr. 86, 291-300. crossref(new window)

18.
Lee, S., Yang, E., Kwon, H., Kang, J., and Kang, B. (2008) Potential probiotic properties of Lactobacillus johnsonii IDCC 9203 isolated from infant feces. Korean J. Microbiol. Biotechnol. 36, 121-127.

19.
Matsumura, A., Saito, T., Arakuni, M., Kitazawa, H., Kawai, Y., and Itoh, T. (1999) New binding assay and preparative trial of cell-surface lectin from Lactobacillus acidophilus group lactic acid bacteria. J. Dairy Sci. 82, 2525-2529. crossref(new window)

20.
Mitsuoka, T. (1990) Bifidobacteria and their role in human health. J. Ind. Microbiol. 6, 263-267. crossref(new window)

21.
Oh, S., Kim, S. H., and Worobo, R. W. (2000) Characterization and purification of a bacteriocin produced by a potential probiotic culture, Lactobacillus acidophilus 30SC. J. Dairy Sci. 83, 2747-2752. crossref(new window)

22.
Ouwehand, A. C., Tuomola, E. M., Tolkko, S., and Salminen, S. (2001) Assessment of adhesion properties of novel probiotic strains to human intestinal mucus. Int. J. Food Microbiol. 64, 119-126. crossref(new window)

23.
Paik, H. D. (2004) Identification and probiotic properties of Lactococcus lactis NK24 isolated from Jeot-gal, a Korean fermented food. Food Sci. Biotechnol. 13, 411-416.

24.
Powell, J. and Ausubel, F. (2008) Models of Caenorhabditis elegans infection by bacterial and fungal pathogens. In: Innate Immunity. Ewbank, J. and Vivier, E. (eds) Humana Press, pp. 403-427.

25.
Razin, S., Kutner, S., Efrati, H., and Rottem, S. (1980) Phospholipid and cholesterol uptake by mycoplasma cells and membranes. BBA-Biomembranes 598, 628-640. crossref(new window)

26.
Reid, G. and Burton, J. (2002) Use of Lactobacillus to prevent infection by pathogenic bacteria. Microbes Infect. 4, 319-324. crossref(new window)

27.
Reid, G., McGroarty, J. A., Angotti, R., and Cook, R. L. (1988) Lactobacillus inhibitor production against Escherichia coli and coaggregation ability with uropathogens. Can. J. Microbiol. 34, 344-351. crossref(new window)

28.
Riddle, D. L., Meyer, B. J., and Priess, J. R. (eds) (1997) C. elegans II. Cold Spring Harbor Laboratory Press. Cold Spring Harbor.

29.
Roberfroid, M. (2007) Prebiotics: The concept revisited. J. Nutr. 137, 830S-837S.

30.
Rudel, L. and Morris, M. (1973) Determination of cholesterol using o-phthalaldehyde. J. Lipid Res. 14, 364-366.

31.
Saarela, M., Mogensen, G., Fonden, R., Matto, J., and Mattila-Sandholm, T. (2000) Probiotic bacteria: Safety, functional and technological properties. J. Biotechnol. 84, 197-215. crossref(new window)

32.
Salminen, S., Bouley, C., Boutron-Ruault, M., Cummings, J., Franck, A., Gibson, G., Isolauri, E., Moreau, M., Roberfroid, M., and Rowland, I. (1998) Functional food science and gastrointestinal physiology and function. Brit. J. Nutr. 80, S147. crossref(new window)

33.
Saulnier, D. M. A., Spinler, J. K., Gibson, G. R., and Versalovic, J. (2009) Mechanisms of probiosis and prebiosis: Considerations for enhanced functional foods. Curr. Opin. Biotech. 20, 135-141. crossref(new window)

34.
Sridevi, N., Vishwe, P., and Prabhune, A. (2009) Hypocholesteremic effect of bile salt hydrolase from Lactobacillus buchneri ATCC 4005. Food Res. Int. 42, 516-520. crossref(new window)