Advanced SearchSearch Tips
Physiological Characteristics and GABA Production of Lactobacillus plantarum K255 Isolated from Kimchi
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Physiological Characteristics and GABA Production of Lactobacillus plantarum K255 Isolated from Kimchi
Park, Sun-Young; Kim, Kee-Sung; Lee, Myung-Ki; Lim, Sang-Dong;
  PDF(new window)
As a major inhibitory neurotransmitter of the central nervous system in animals, -aminobutyric acid (GABA) has several physiological functions, such as anti-hypertensive, diuretic, tranquilizer and anti-stress effects in human. In order to determine strains with high GABA producing ability and glutamate decarboxylase (GAD) activity, 273 bacteria were isolated from various types of Kimchi. Strain K255 contained of GABA in MRS broth containing 1% MSG, of GABA in MRS broth containing 2% MSG and of GABA in MRS broth containing 3% MSG. It showed that K255 had the highest GABA production ability compared to other commercial lactic acid bacteria. K255 was identified as Lactobacillus plantarum based on its API carbohydrate fermentation pattern and 16S rDNA sequence. K255 was investigated for its physiological characteristics. The optimum growth temperature of K255 was and cultures took 13 h to reach the pH 4.4. K255 showed more sensitive to bacitracin in a comparison of fifteen different antibiotics, and showed most resistance to kanamycin and vancomycin. Moreover, it was comparatively tolerant to bile juice and acid and displayed resistance to Escherichia coli, Salmonella Typhimurium, Staphylococcus aureus, with rates of 30.8%, 29.7%, and 23.4% respectively. These results demonstrate that K255 could be an excellent strain for the production of functional products.
Lactobacillus plantarum;physiological characteristics;-aminobutyric acid;functional product;
 Cited by
Bae, M. O., Kim, H. J., Cha, Y. S., Lee, M. K., and Oh, S. H. (2009) Effects of Kimchi lactic acid bacteria Lactobacillus sp. OPK2-59 with high GABA producing capacity on liver function improvement. J. Korean Soc. Food Sci. Nutri. 38, 1499-1505. crossref(new window)

Beaud, D., Tailliez, P., and Anba-Mondoloni, J. (2005) Genetic characterization of the ${\beta}$-glucuronidase enzyme from a human intestinal bacterium, Ruminococcus gnavus. Microbiology 151, 2323-2330. crossref(new window)

Booth, I. R. (1985) Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 49, 359-378.

Buchanan, R. E. and Gibbons, N. E. (1974) Bergey's manual of determinative bacteriology. 8th ed, Waverly Press, Inc., Baltimore, pp. 576-593.

Cheigh, H. S. and Park, K. Y. (1994) Biochemical, microbiological, and nutritional aspects of Kimchi (Korean fermented vegetable products). Crit. Rev. Food Sci. 34, 175-203. crossref(new window)

Cho, J. H., Lee, D. Y., Yang, C. N., Jeon, J. I., Kim, J. H., and Han, H. U. (2006) Microbial population dynamics of Kimchi, a fermented cabbage product. FEMS Microbiol. Lett. 257, 262-267. crossref(new window)

Clark, P. A., Cotton, L. N., and Martin, J. H. (1993) Selection of bifidobacteria for use as dietary adjuncts in cultured dairy foods: II. Tolerance to simulated pH of human stomachs. Cul. Dairy Prod. J. 28, 11-14.

Gilliland, S. E. and Speck, M. L. (1977) Antagonistic action of Lactobacillus acidophilus toward intestinal and foodborne pathogens in associative cultures. J. Food Prot. 40, 820-823. crossref(new window)

Gilliland, S. E. and Walker D. K. (1990) Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in humans. J. Dairy Sci. 73, 905-911. crossref(new window)

Hur, H. J., Lee, K. W., Kim, H. Y., Chung, D. K., and Lee, H. J. (2006) In vitro immunopotentiating activities of cellular fractions of lactic acid bacteria isolated from Kimchi and bifidobacteria. J. Microbiol. Biotechnol. 16, 661-666.

Jakobs, C., Jaeken, J., and Gibson, K. M. (1993) Inherited disorders of GABA metabolism. J. Inherit. Metab. Dis. 16, 704-715. crossref(new window)

Jeon, S. R., Song, T. S., Kim, J. Y., Shin, W. C., Her, S. W., and Yoon, S. S. (2007) Identification and characterization of lactic acid bacteria starters isolated from the commercial drink-yogurt products. Korean J. Food Sci. An. 27, 509-516. crossref(new window)

Kim, J. H., Kwon, M. J., Lee, S. Y., Rye, J. D., Moon, G. S., Cheigh, H. S., and Song, Y. O. (2002) The effect of Kimchi intake on production of free radicals and anti-oxidative enzyme activities in the liver of SAM. J. Korean Soc. Food Sci. Nutr. 31, 109-116. crossref(new window)

Kim, S. H., Yang, J. Y., Kang, S. A., Chun, H. K., and Park, K. Y. (2007) Current state and improvement for Korean Kimchi industry. Food Indus. Nutr. 12, 7-13.

Kim, Y. J., Jang, S. J., Park, J. M., Kim, C. U., and Park, Y. S. (2010) Culture conditions of garlic resistant lactic acid bacteria for feed additives. Food Eng. Progress 14, 65-74.

Kirjavainen, P. V., Ouwehand, A. C., Isolauri, E., and Salminen, S. J. (1998) The ability of probiotic bacteria to bind to human intestinal mucus. FEMS Microbiol. Lett. 167, 185-189. crossref(new window)

Lee, N. K., Yun, C. W., Kim, S. W., Chang, H. I., Kang, C. W., and Paik, H. D. (2008) Screening of lactobacilli derived from chicken feces and partial characterization of Lactobacillus acidophilus A12 as animal probiotics. J. Microbial. Biotechnol. 18, 338-342.

Lee, Y. K. and Salminen, S. (1995). The coming age of probiotics. Trends Food Sci. Technol. 6, 241-245. crossref(new window)

Lim, S. D., Kim, K. S., and Do, J. R. (2011) Physiological characteristics and production of vitamin K2 by Lactobacillus fermentum LC272 isolated from raw milk. Korean J. Food Sci. An. 31, 513-520. crossref(new window)

Manyam, B. V., Katz, L., Hare, T. A., Kaniefski, K., and Tremblay, R. D. (1981) Isoniazid induced elevation of cerebrospinal fluid (CSF) GABA levels and effects on chorea in huntington's disease. Ann. Neurol. 10, 7-35.

Matsumoto, M., Ohishi, H., and Benno, Y. (2004) $H^+$-ATPase activity in bifidobacterium with special reference to acid tolerance. Int. J. Food Microbiol. 93, 109-113. crossref(new window)

Mcdonald, L. C., Fleming, H. P., and Hassan, H. M. (1990) Acid tolerance of Leuconostoc mesenteroides and Lactobacillus casei. Appl. Environ. Microbial. 53, 2124-2128.

Medina, R., Katz, M., Gonzalez, S., and Oliver, G. (2001) Characterization of the lactic acid bacteria in ewe's milk and cheese from Northwest Argentina. J. Food Prot. 64, 559-563.

Oh, S. H., Kim, H. J., Kim, Y. H., Yu, J. J., Park, K. B., and Jeon, J. I. (2008) Changes in some physico-chemical properties and ${\gamma}$-aminobutyric acid content of Kimchi during fermentation and storage. J. Food Sci. Nutr. 13, 219-224. crossref(new window)

Oh, S. H. and Yu, J. J. (2011) ${\gamma}$-Aminobutyric acid production and glutamate decarboxylase activity of Lactobacillus sakei OPK2-59 isolated from Kimchi. Korean J. Microbiol. 47, 316-322.

Rojo-Bezares, B., Saenz, Y., Poeta, P., Zarazaga, M., Ruiz-Larrea, F., and Torres, C. (2006) Assessment of antibiotic susceptibility within lactic acid bacteria strains isolated from wine. Int. J. Food Microbiol. 111, 234-240. crossref(new window)

Saikusa, T., Horino, T., and Mori, Y. (1994) Accumulation of ${\gamma}$-aminobutyric acid (GABA) in the rice germ during water soaking. Biosci. Biotech. Biochem. 58, 292-2291.

Succi, M., Tremonte, P., Reale, A., Sorrentino, E., Grazia, L., and Pacifico, S. (2005) Bile salt and acid tolerance of Lactobacillus rhamnosus strains isolated from Parmigiano Reggiano cheese. FEMS Microbiol. Lett. 244, 129-137. crossref(new window)

Tsushida, T. and Murai, T. (1987) Conversion of glutamic acid to g-aminobutyric acid in tea leaves under anaerobic conditions. Agric. Biol. Chem. 51, 2865-2871. crossref(new window)

Ueno, H. (2000) Enzymatic and structural aspects on glutamate decarboxylase. J. Mol. Catal. B-Enzym. 10, 67-79. crossref(new window)

Vaiva, G., Thomas, P., Ducrocq, F., Fontaine, M., Boss, V., Devos, P., Rascle, C., Cottencin, O., Brunet, A., Laffargue, P., and Coudemand, M. (2004) Low posttrauma GABA plasma levels as a predictive factor in the development of acute post-traumatic stress disorder. Biol. Psychiat. 55, 250-254. crossref(new window)

Ventura, M., Canchaya, C., van Sinderen, D., Fitzgerald, G. F., and Zink, R. (2004) Bifidobacterium lactis DSM 10140: identification of the atp (atpBEFHAGDC) operon and analysis of its genetic structure, characteristics, and phylogeny. Appl. Environ. Microbiol. 70, 3110-3121. crossref(new window)

Wong, C. G. T., Bottiglieri, T., and Snead, O. C. (2003) GABA, ${\gamma}$-hydroxybutyric acid, and neurological disease. Ann. Neurol. 54. S3-S12.

Zhang, G. and Bown, A.W. (1997) The rapid determination of gamma aminobutyric acid. Phytochem. 44, 1007-1009. crossref(new window)