Advanced SearchSearch Tips
Physiological Characteristics and Production of Folic Acid of Lactobacillus plantarum JA71 Isolated from Jeotgal, a Traditional Korean Fermented Seafood
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Physiological Characteristics and Production of Folic Acid of Lactobacillus plantarum JA71 Isolated from Jeotgal, a Traditional Korean Fermented Seafood
Park, Sun-Young; Do, Jeong-Ryong; Kim, Young-Jin; Kim, Kee-Sung; Lim, Sang-Dong;
  PDF(new window)
Folic acid, one of the B group of vitamins, is an essential substance for maintaining the functions of the nervous system, and is also known to decrease the level of homocysteine in plasma. Homocysteine influences the lowering of the cognitive function in humans, and especially in elderly people. In order to determine the strains with a strong capacity to produce folic acid, 190 bacteria were isolated from various kinds of jeotgal and chungkuk-jang. In our test experiment, JA71 was found to contain of folic acid after 24 h of incubation in an MRS broth. This showed that JA71 has the highest folic acid production ability compared to the other lactic acid bacteria that were isolated. JA71 was identified as Lactobacillus plantarum by the result of API carbohydrate fermentation pattern and 16s rDNA sequence. JA71 was investigated for its physiological characteristics. The optimum growth temperature of JA71 was , and the cultures took 12 h to reach pH 4.4. JA71 proved more sensitive to bacitracin when compared with fifteen different antibiotics, and showed most resistance to neomycin and vancomycin. Moreover, it was comparatively tolerant of bile juice and acid, and displayed resistance to Escherichia coli, Salmonella Typhimurium, and Staphylococcus aureus with restraint rates of 60.4%, 96.7%, and 76.2%, respectively. These results demonstrate that JA71 could be an excellent strain for application to functional products.
Lactobacillus plantarum;physiological characteristics;folic acid;functional product;
 Cited by
Lactic acid fermentation as a tool for increasing the folate content of foods, Critical Reviews in Food Science and Nutrition, 2017, 57, 18, 3894  crossref(new windwow)
Booth, I. R. (1985) Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 49, 359-378.

Borriello, S. P., Hammes, W. P., Holzapfel, W., Marteau, P., Schrezenmeir, J., Vaara, M., and Valtonen, V. (2003) Safety of probiotics that contain Lactobacillus or bifidobacteria. Clin. Infect. Dis. 36, 775-780. crossref(new window)

Buchanan, R. E. and Gibbons, N. E. (1974) Bergey's manual of determinative bacteriology. (ed), Waverly Press, Inc., Baltimore. pp. 576-593.

Cataloluk, O. and Gogebaken, B. (2004) Presebce of drug resistance in intestinal lactobacilli of dairy and human origin. FEMS Microbiol. Lett. 236, 7-12. crossref(new window)

Charteris, W. P., Kelly, P. M., Morelli, L., and Collins, J. K. (2001) Gradient diffusion antibiotic susceptibility testing of potentially probiotic lactobacilli. J. Food Prot. 64, 2007-2014.

Clark, P. A., Cotton, L. N., and Martin, J. H. (1993) Selection of bifidobacteria for use as dietary adjuncts in cultured dairy foods: II-tolerance to simulated pH of human stomachs. Cul. Dairy Prod. J. 28, 11-14.

Cotter, P. D., Hill, C., and Ross, R. P. (2005) Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol. 3, 777-788. crossref(new window)

Dangour, A. D., Whitehouse, P. J., Rafferty, K., Mitchell, S. A., Smith, L., Hawkesworth, S., and Vallas, B. (2010) B-vitamins and fatty acids in the prevention and treatment of Alzheimer's disease and dementia: a systematic review. J. Alzheimers Dis. 22, 205-224.

Danielsen, M. and Wind, A. (2003) Susceptibility of Lactobacillus spp. to antimicrobial agents. Int. J. Food Microbiol. 82, 1-11. crossref(new window)

Divya, J. B., Varsha, K. K., and Nampoothiri, K. M. (2012) Newly isolated lactic acid bacteria with probiotic features for potential application in food industry. Appl. Biochem. Biotechnol. 167, 1314-1324. crossref(new window)

Drago, L., Gismondo, M. R., Lombardi, A., Haen, C. D., and Gozzini, L. (1997) Inhibition of in vitro growth of enteropathogens by new Lactobacillus isolates of human intestinal origin. FEMS Microbiol. Lett. 153, 455-463. crossref(new window)

Duthie, S. J., Whalley, L. J., Collins, A. R., Leaper, S., Berger, K., and Deary, I. J. (2002) Homocysteine, B vitamin status, and cognitive function in the elderly. Am. J. Clin. Nutr. 75, 13-908.

Erkkila, S. and Petaja, E. (2000) Screening of commercial meat starter cultures at low pH and in the presence of bile salts for potential probiotic use. Meat Sci. 55, 279-300. crossref(new window)

Gilliland, S. E. and Speck, M. L. (1977) Antagonistic action of Lactobacillus acidophilus toward intestinal and foodborne pathogens in associative cultures. J. Food Prot. 40, 820-823.

Gilliland, S. E., Staley, T. E., and Bush, L. J. (1984) Importance of bile tolerance of Lactobacillus acidophilus used as a dietary adjunct. J. Dairy Sci. 67, 3045-3051. crossref(new window)

Gilliland, S. E. and Walker D. K. (1990) Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in humans. J. Dairy Sci. 73, 905-911. crossref(new window)

Goldstein, E. J. C., Citron, D. M., Merriam, C. V., Warren, Y., and Tyrrell, K. L. (2000) Comparative in vitro activities of ertapenem (MK-0826) against 1,001 anaerobes isolated from human intra-abdominal infections. Antimicrob. Agents Chemother. 44, 2389-2394. crossref(new window)

Havinaar, R., Brink, B. T., and Veid, J. H. J. I. (1992) Selection of strains for probiotic use. In: Fuller R. (ed), Chapman & Hall, London. pp. 209-224.

Hur, S. H. (1996) Critical review on the microbiological standardization of salt-fermented fish product. J. Food Sci. Nutr. 25, 885-891.

Jacobsen, C. N., Nielsen, V. R., Hayford, A. E., Moller, P. L., Michaelsen, K. F., Paerregaard, A., Sandstrom, B., Tvede, M., and Jakobsen, M. (1999) Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl. Environ. Microbiol. 65, 4949-4956.

Kim, H. J., Kim, H. S., Kim, K. N., Kim, G., Son, J. I., Kim, S. Y., and Chang., N. S. (2011) Relationship among plasma homocystein, folite, vitamin B12 and nutrient intake and neurocognitive function in the elderly. Korean J. Nutr. 44, 498-506. crossref(new window)

Kim, J. H., Rhee, Y. H., Oh, M. K., Lee, Y. K., and Shin, S. Y. (1996) $\beta$-galactosidase activity of lactobacillus spp. from pickles. J. Korean. Soc. Appl. Biol. Chem. 39, 437-442.

Kirjavainen, P. V., Ouwehand, A. C., Isolauri, E., and Salminen, S. J. (1998) The ability of probiotic bacteria to bind to human intestinal mucus. FEMS Microbiol. Lett. 167, 185-189. crossref(new window)

Kruman, I. I., Culmsee, C., Chan, S. L., Kruman, Y., Gue, Z., Penix, L., and Mattson, M. P. (2000) Homocysteine elicits a DNA damage response in neurins that promotes apoptosis and hypersensitivity to excitotoxicity. J. Neurosci. 20, 6920-6926.

Larsen, A. G., Vogensen, F. K., and Josephsen, J. (1993) Antimicrobial activity of lactic acid bacteria isolated from sour doughs: purification and characterization of bavaricin A, a bacteriocin produced by Lactobacillus bavaricus MI401. J. Appl. Bacteriol. 75, 113-122. crossref(new window)

Lee, Y. K. and Salminen, S. (1995) The coming of age of probiotics. Trends Food Sci. Technol. 6, 241-245. crossref(new window)

Lin, M. Y. and Young, C. M. (2000) Folate levels in cultures of lactic acid bacteria. Int. Dairy J. 10, 409-413. crossref(new window)

Mathur, S. and Singh, R. (2005) Antibiotic resistance in food lactic acid bacteria-a review. Int. J. Food Microbiol. 105, 281-295. crossref(new window)

Mcdonald, L. C., Fleming, H. P., and Hassan, H. M. (1990) Acid tolerance of Leuconostoc mesenteroides and Lactobacillus casei. Appl. Environ. Microbial. 53, 2124-2128.

McMahon, J. A., Green, T. J., Skeaff, C. M., Knight, R. G., Mann, J. I., and Williams, S. M. (2006) A controlled trial of homocysteine lowering and cognitive performance. N. Engl. J. Med. 354, 2764-2772. crossref(new window)

Morris, M. C., Evans, D. A, Bienias, J. L., Tangney, C. C., Hebert, L. E., Scherr, P. A., and Schneider, J. A. (2005) Dietary folate and vitamin B12 intake and cognitive decline among community-dwelling older perons. Arch. Neurol. 62, 641-645. crossref(new window)

Nguyen, T. D. T., Kang, J. H., and Lee, M. S. (2007) Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects. Int. J. Food Microbiol. 113, 358-361. crossref(new window)

Noriega, L., Gueimonde, M., Sanchez, B., Margolles, A., and Reyes-Gavilan, C. G. D. L. (2004) Effect of the adaptation to high bile salt concentrations on glycosidic activity, survival at low pH and cross-resistance to vile salts in Bifidobacterium. Int. J. Food Micro. 94, 79-86. crossref(new window)

Ouwehand, A. C., Salminen, S., and Isolauri, E. (2002) Probiotics: an overview of beneficial effects. Antonie van Leeuwenhoek 82, 279-289. crossref(new window)

Papamanoli, E., Tzanetakis, N., Litopoulou-Tzanetaki, E., and Kotzekidou, P. (2003) Characterizaton of lactic acid bacteria isolated form a Greek dry fermented sausage in respect of their technological and probiotic properties. Meat Sci. 65, 859-867. crossref(new window)

Pennacchia, C., Ercolini, D., Blaiotta, G., Pepe, O., Mauriello, G., and Villani, F. (2004) Selection of Lactobacillus strains from fermented sausages for their potential use as probiotics. Meat Sci. 67, 309-317. crossref(new window)

Prasad, J., Gill, H., Smart, J., and Gopal, P. K. (1998) Selection and characterization of Lactobacillus and Bifidobacterium strains for use as probiotics. Int. Dairy J. 8, 993-1002. crossref(new window)

Riggs, K. M., Spiro, A., Tucker, K., and Rush, D. (1996) Relations of vitamin B-12, vitamin B-6, folate, and homocysteine to cognitive performance in the normative aging study. Am. J. Clin. Nutr. 63, 306-314.

Strahinic, I., Busarcevic, M., Pavlica, D., Milasin, J., Colic, N., and Topisirovic L. (2007) Molecular and biochemical characterizations of human oral lactobacilli as putative probiotic candidates. Oral Microbial. Immunol. 22, 111-117. crossref(new window)

Succi, M., Tremonte, P., Reale, A., Sorrentino, E., Grazia, L., and Pacifico, S. (2005) Bile salt and acid tolerance of Lactobacillus rhamnosus strains isolated from Parmigiano Reggiano cheese. FEMS Microbiol. Lett. 244, 129-137. crossref(new window)

Sybesma, W., Starrenburg, M., Kleerebezem, M., Mierau, L., De Vos, W. M., and Hugenholtz, J. (2003) Increased production of folate by metabolic engineering of Lactococcus lactis. Appl. Environ. Microbiol. 69, 3069-3076. crossref(new window)

Thirabunyanon, M., Boonprowom, P., and Niamsup, P. (2009) Probiotic potential of lactic acid bacteria isolated from fermented dairy milk on antiproliferation of colon cancer cells. Biotechnol. Lett. 31, 571-576. crossref(new window)