Advanced SearchSearch Tips
Selection and Characteristics of Fermented Salted Seafood (jeotgal)-Originated Strains with Excellent S-adenosyl-L-methionine (SAM) Production and Probiotics Efficacy
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Selection and Characteristics of Fermented Salted Seafood (jeotgal)-Originated Strains with Excellent S-adenosyl-L-methionine (SAM) Production and Probiotics Efficacy
Kim, Min-Jeong; Park, Sunhyun; Lee, Ran-Sook; Lim, Sang-Dong; Kim, Hyo Jin; Lee, Myung-Ki;
  PDF(new window)
This study is executed to develop probiotics which produce S-adenosyl-L-methionine (SAM), a methyl group donor of the 5-methyltetrahydrofolate methylation reaction within the animal cell. SAM is an essential substance for the synthesis, activation, and metabolism of hormones, neurotransmitters, nucleic acids, phospholipids, and cell membranes of animals. The SAM is also known as a nutritional supplement to improve brain functions of the human. In this study, the SAM-producing strains are identified in 18 types of salted fish, and then, the strains with excellent SAM productions are being identified, with 1 strain in the Enterococcus genus and 9 strains in the Bacillus genus. Strains with a large amount of SAM production include the lactic acid bacteria such as En. faecium and En. durans, En. sanguinicola, as well as various strains in the Bacillus genus. The SAM-overproducing strains show antibacterial activities with certain harmful microbes in addition to the weak acid resistances and strong bile resistances, indicating characteristics of probiotics. It is possible that the jeotgal-originated beneficial strains with overproducing SAM can be commercially utilized in order to manufacture SAM enriched foods.
S-adenosyl-L-methionine;fermented salted seafood probiotics;jeotgal;
 Cited by
Burren, K. A., Mills, K., Copp, A. J., and Greene, N. D. (2006) Quantitative analysis of S-adenosylmethionine and S-adenosyl- homocysteine in neurulation-stage mouse embryos by liquid chromatography tandem mass spectrometry. J. Chromatogr. B. 844, 112-118. crossref(new window)

Cook, R. J., Thomashow, L. S., Weller, D. M., Fujimoto, D., Mazzola, M., Bangera, G., and Kim, D. S. (1995) Molecular mechanisms of defense by rhizobacteria against root disease. P. Natl. Acad. Sci. USA. 92, 4197-4201. crossref(new window)

Cooney, C. A. (1993) Are somatic cells inherently deficient in methylation metabolism? A proposed mechanism for DNA methylation loss, senescence and aging. Growth Dev. Aging 57, 261-273.

Corrales, F., Gimenez, A., Alvarez, L., Caballeria, J., Pajares, M. A., Andreu, H., Pares, A., Mato, J. M., and Rodes, J. (1992) S-adenosylmethionine treatment prevents carbon tetrachloride- induced S-adenosylmethionine synthetase inactivation and attenuates liver injury. Hepatology 16, 1022-1027. crossref(new window)

Delgado, S. and Mayo, B. (2004) Phenotypic and genetic diversity of Lactococcus lactis and Enterococcus spp. Strains isolated from Northern Spain starter-free farmhouse cheeses. Int. J. Food Microbiol. 90, 309-319. crossref(new window)

Erkkila, S. and Petaja, E. (2000) Screening of commercial meat starter cultures at low pH and in the presence of bile salts for potential probiotic use. Meat Sci. 55, 279-300. crossref(new window)

Fernandez, M. F., Boris, S., and Barbes, C. (2003) Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract. J. Appl. Microbiol. 94, 449-455. crossref(new window)

Guattari B. (1991) High-performance liquid chromatographic determination, with ultraviolet detection, of S-adenosyl-Lmethionine and of normetanephrine and metanephrine for phenylethanolamine-N-methyltransferase or catechol-O-methyltransferase activity. J. Chromatogr. 567, 254-260. crossref(new window)

Horikawa, S., Sasuga, J., Shimizu, K., Ozasa, O., and Tsukada, K. (1990) Molecular cloning and nucleotide sequence of cDNA encoding the rat kidney S-adenosylmethionine synthetase. J. Biol. Chem. 23, 13683-13686.

Hur, S. H. (1996) Critical review on the microbiological standardization of salt-fermented fish product. J. Korean Soc. Food Sci. Nutr. 25, 885-891.

Kim, J. Y., Seo, H. S., Seo, M. J., Suh, J. W., Hwang, I., and Ji G. E. (2008) Development of S-adenosyl-L-methionine (SAM)-reinforced probiotic yogurt using Bifidobacterium bifidum BGN4. Food Sci. Biotechnol. 5, 1025-1031.

Koning, B. (1987) A long-term (two years) clinical trial with S-adenosyllmethionine for the treatment of osteoarthritis. Am. J. Med. 20, 89-94.

Lee, K. H. (1969) Microbiological and enzymological studies on the flavor components of sea food pickles. J. Korean Agric. Chem. Soc. 11, 1-6.

Lee, M. K., Lee, J. K., Son, J. A., Kang, M. H., Koo, K. H., and Suh, J. W. (2008) S-adenosyl-L-methionine (SAM) production by lactic acid bacteria strains isolated from different fermented kimchi products. Food. Sci. Biotechnol. 17, 857-860.

Lee, N. K., Jeon, E. H., Lee, H. J., Cho, I. J., and Hahm, Y. T. (2006) Isolation, identification, and characterization of Bacillus spp. from the traditionally fermented cheonggukjangs in the Gyeonggi and the Gangwon provinces. J. Korean. Soc. Appl. Biol. Chem. 49, 276-280.

Lee, Y. K. and Salminen, S. (1995) The coming of age of probiotics. Trends Food Sci. Technol. 6, 241- 245. crossref(new window)

Lieber, C. S. (1999) Role of S-adenosyl-L-methionine in the of treatment of liver diseases. J. Hepatol. 30, 1155-1159. crossref(new window)

Mari, M., Guizzardi, M., Brunelli, M., and Folchi, A. (1996) Postharvest biological control of grey mould (Bortytis cinerea Pers.: Fr.) on fresh-market tomatoes with Bacillus amyloliquefaciens. Crop Prot. 15, 699-705. crossref(new window)

Mato, J. M., Camara, J., Fernandez de Paz, J., Caballeria, L., Coll, S., Caballero, A., Garcia-Buey, L., Beltran, J., Benita, V., Caballeria, J., Solas, R., Moreno-Otero, R., Barrao, F., Martin-Duce, A., Correa, J. A., Pares, A., Barrao, E., Garcia- Magaz, I., Puerta, J. L., Moreno, J., Boissardg, G., Ortiz, P., and Rodes, J. (1999) S-Adenosylmethionine in alcoholic liver cirrhosis: a randomized, placebo-controlled, double-blind, multicenter clinical trial. J. Hepatol. 30, 1081-1089. crossref(new window)

Porter, C. W. and Sufrin, J. R. (1986) Interference with polyamine biosynthesis and/or function by analogs of polyamines or methionine as a potential anticancer chemotherapeutic strategy. Anticancer Res. 6, 525-542.

Sands, A. and Crisan, E. V. (1974) Microflora of fermented Korean seafoods. J. Food Sci. 39, 1002-1005. crossref(new window)

Santi, R. D. and Rodegerdts, U. (1983) Functional myelography in spondylolisthesis. Arch. Ortho. Trauma. Surg. 101, 75-82. crossref(new window)

Shelly, C. L. (2000) S-adenosylmethionine. Int. J. Biochem. Cell Bio. 32, 391-395. crossref(new window)

Succi, M., Tremonte, P., Reals, A., Sorrentino, E., Grazia, L., and Pacifico, S. (2005) Bile salt and acid tolerance of Lacto bacillus rhamnosus strains isolated from Parmigiano Reggiano cheese. FEMS Microbiol. Lett. 244, 129-137. crossref(new window)

Wang, W., Kramer, P. M., Yang, S., Pereira, M. A., and Tao, L. H. (2001) Reversed-phase high-performance liquid chromatography procedure for the simultaneous determination of S-adenosyl-L-methionine and S-adenosyl-L-homocysteine in mouse liver and the effect of methionine on their concentrations. J. Chromatogr. 762, 59-65. crossref(new window)