Advanced SearchSearch Tips
Microencapsulation of Lactobacillus plantarum DKL 109 using External Ionic Gelation Method
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Microencapsulation of Lactobacillus plantarum DKL 109 using External Ionic Gelation Method
Chun, Honam; Kim, Cheol-Hyun; Cho, Young-Hee;
  PDF(new window)
The aim of this study was to apply the external ionic gelation using an atomizing spray device comprised of a spray gun to improve the viability of Lactobacillus plantarum DKL 109 and for its commercial use. Three coating material formulas were used to microencapsulate L. plantarum DKL 109: 2% alginate (Al), 1% alginate/1% gellan gum (Al-GG), and 1.5% alginate/3% gum arabic (Al-GA). Particle size of microcapsules was ranged from 18.2 to depending on the coating materials. Al-GA microcapsules showed the highest microencapsulation yield (98.11%) and resulted in a significant increase in survivability of probiotic in a high acid and bile environment. Encapsulation also improved the storage stability of cells. The viability of encapsulated cells remained constant after 1-mon storage at ambient temperature. The external ionic gelation method using an atomizing spray device and the Al-GA seems to be an efficient encapsulation technology for protecting probiotics in terms of scale-up potential and small microcapsule size.
probiotics;Lactobacillus plantarum;external gelation;atomizing spray device;
 Cited by
In-vitro evaluation of targeted release of probiotic Lactobacillus casei (2651 1951 RPK) from synbiotic microcapsules in the gastrointestinal (GI) system: Experiments and modeling, LWT - Food Science and Technology, 2017, 83, 243  crossref(new windwow)
Agnihotri, N., Mishra, R., Goda, C., and Arora, M. (2012) Microencapsulation- A novel approach in drug delivery: A review. Indo Global J. Pharmaceutical Sci. 2, 1-20.

Chandramouli, V., Kailasapathya, K., Peirisb, P., and Jonesb, M. (2004) An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J. Microbiol Meth. 56, 27-35. crossref(new window)

Cho, Y. H., Hong, S. M., and Kim, C. H. (2013) Isolation and characterization of lactic acid bacteria from Kimchi: Korean traditional fermented food to apply into fermented dairy products. Korean J. Food Sci. An. 33, 75-82. crossref(new window)

Desmond, C., Ross, R. P., O'Callaghan, E., Fitzgerald, G., and Stanton, C. (2002) Improved survival of Lactobacillus paracasei NFBC 338 in spray-dried powders containing gum acacia. J. Appl. Microbiol. 93, 1003-1011. crossref(new window)

Dong, Q. Y., Chen, M. Y., Xin, Y., Qin, X. Y., Cheng, Z., Shi, L. E., and Tang, Z. X. (2013) Alginate-based and proteinbased materials for probiotics encapsulation: A review. Int. J. Food Sci. Technol. 48, 1339-1351. crossref(new window)

Gerez, C. L., Font de Valdez, G., Gigante, M. L., and Grosso, C. R. F. (2012) Whey protein coating bead improves the survival of the probiotic Lactobacillus rhamnosus CRL 1505 to low pH. Lett. Appl. Microbiol. 54, 552-556. crossref(new window)

Kailasapathy, K. (2006) Survival of free and encapsulated probiotic bacteria and their effect on the sensory properties of yoghurt. LWT-Food Sci. Technol. 39, 1221-1227. crossref(new window)

Kanmani, P., Kumar, R. S., Yuvaraj, N., Paari, K. A., Pattukumar, V., and Arul, V. (2011) Effect of cryopreservation and microencapsulation of lactic acid bacterium Enterococcus faecium MC 13 for long-term storage. Biochem. Eng. J. 58-59, 140-147. crossref(new window)

Koo, S. M., Cho, Y. H., Huhg, C. S., Baek, Y. J., and Park, J. (2001) Improvement of the stability of Lactobacillus casei YIT 9018 by microencapsulation using alginate and chitosan. J. Microbiol. Biotechnol. 11, 376-383.

Krasaekoopt, W., Bhandari, B., and Deeth, H. (2003) Evaluation of encapsulation techniques of probiotics for yoghurt. Int. Dairy J. 13, 3-13. crossref(new window)

Krasaekoopt, W., Bhandari, B., and Deeth, H. (2004) The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. Int. Dairy J. 14, 737-743. crossref(new window)

Lee, J. S., Cha, D. S., and Park, H. J. (2004) Survival of freeze- dried Lactobacillus bulgaricus KFRI 673 in chitosan-coated calcium alginate microparticles. J. Agric. Food Chem. 52, 7300-7305. crossref(new window)

Martin, M. J., Lara-Villoslada, F., Ruiz, M. A., and Morales, M. E. (2013) Effect of unmodified starch on viability of alginate- encapsulated Lactobacillus fermentum CECT5716. LWT-Food Sci. Technol. 53, 480-486. crossref(new window)

Nayak, A. K., Das, B., and Maji, R. (2012) Calcium alginate/gum arabic beads containing glibenclamide: Development and in vitro characterization. Int. J. Biological Macromolecules 51, 1070-1078. crossref(new window)

Picot, A. and Lacroix, C. (2004) Encapsulation of Bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. Int. Dairy J. 14, 505-515. crossref(new window)

Reis, C. P., Neufeld, R. J., Vilelas, S., Ribeiro, A. J., and Veiga, F. (2006) Review and current status of emulsion/dispersion technology using an internal gelation process for the design of alginate particles. J. Microencapsulation 23, 245-257. crossref(new window)

Rosas-Flores, W., Ramos-Ramirez, E. G., and Salazar-Montoya, J. A. (2013) Microencapsulation of Lactobacillus helveticus and Lactobacillus delbrueckii using alginate and gellan gum. Carbohydr. Polym. 98, 1011-1017. crossref(new window)

Sabikhi, L., Babu, R., Thompkinson, D. K., and Kapila, S. (2010) Resistance of microencapsulated Lactobacillus acidophilus LA1 to processing treatments and simulated gut conditions. Food Bioproc. Technol. 3, 586-593. crossref(new window)

Shi, L. E., Li, Z. H., Zhang, Z. L., Zhang, T. T., Yu, W. M., Zhou, M. L., and Tang, Z. X. (2013) Encapsulation of Lactobacillus bulgaricus in carrageenan-locust bean gum coated milk microspheres with double layer structure. LWT-Food Sci. Technol. 54, 147-151. crossref(new window)

Soccol, C. R., Vandenberghe, L. P., Spier, M. R., Medeiros, A. B. P., Yamaguishi, C. T., De Dea Lindner, J., Pandey, A., and Thomaz-Soccol, V. (2010) The potential of probiotics: A review. Food Technol. Biotechnol. 48, 413-434.

Sohail, A., Turner, M. S., Coombes, A., Bostrom, T., and Bhandari, B. (2011) Survivability of probiotics encapsulated in alginate gel microbeads using a novel impinging aerosols method. Int. J. Food Microbiol. 145, 162-168. crossref(new window)

Sohail, A., Turner, M. S., Coombes, A., and Bhandari, B. (2013) The viability of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM following double encapsulation in alginate and maltodextrin. Food Bioproc. Technol. 6, 2763-2769. crossref(new window)

Song, S. H., Cho, Y. H., and Park, J. (2003) Microencapsulation of Lactobacillus casei YIT 9018 using a microporous glass membrane emulsification system. J. Food Sci. 68, 195-200. crossref(new window)

Zou, Q., Liu, X., Zhao, J., Tian, F., Zhang, H. P., Zhang, H., and Chen, W. (2012) Microencapsulation of Bifidobacterium bifidum F-35 in whey protein-based microcapsules by transglutaminase-induced gelation. J. Food Sci. 77, M270-M277. crossref(new window)