Advanced SearchSearch Tips
Genome of Bifidobacteria and Carbohydrate Metabolism
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Genome of Bifidobacteria and Carbohydrate Metabolism
Bondue, Pauline; Delcenserie, Veronique;
  PDF(new window)
In recent years, the knowledge about bifidobacteria has considerably evolved thanks to recent progress in molecular biology. The analysis of the whole genome sequences of 48 taxa of bifidobacteria offers new perspectives for their classification, especially to set up limit between two species. Indeed, several species are presenting a high homology and should be reclassified. On the other hand, some subspecies are presenting a low homology and should therefore be reclassified into different species. In addition, a better knowledge of the genome of bifidobacteria allows a better understanding of the mechanisms involved in complex carbohydrate metabolism. The genome of some species of bifidobacteria from human but also from animal origin demonstrates high presence in genes involved in the metabolism of complex oligosaccharides. Those species should be further tested to confirm their potential to metabolize complex oligosaccharides in vitro and in vivo.
bifidobacteria;genomic;complex oligosaccharides;inuline;galacto oligosaccharides;human milk oligosaccharide;bovine milk oligosaccharide;
 Cited by
Mothers Secretor Status Affects Development of Childrens Microbiota Composition and Function: A Pilot Study, PLOS ONE, 2016, 11, 9, e0161211  crossref(new windwow)
Cell-Free Spent Media Obtained from Bifidobacterium bifidum and Bifidobacterium crudilactis Grown in Media Supplemented with 3′-Sialyllactose Modulate Virulence Gene Expression in Escherichia coli O157:H7 and Salmonella Typhimurium, Frontiers in Microbiology, 2016, 7  crossref(new windwow)
Adamberg, S., Sumeri, I., Uusna, R., Ambalam, P., Kondepudi, K. K., Adamberg, K., Wadstrom, T., and Ljungh, A. (2014) Survival and synergistic growth of mixed cultures of bifidobacteria and lactobacilli combined with prebiotic oligosaccharides in a gastrointestinal tract simulator. Microb. Ecol. Health Dis. 25, doi: 10.3402.

Arrieta, M. C., Stiemsma, L. T., Amenyogbe, N., Brown, E. M., and Finlay, B. (2014) The intestinal microbiome in early life: health and disease. Front. Immunol. 5, 427.

Barile, D. and Rastall, R. A. (2013) Human milk and related oligosaccharides as prebiotics. Curr. Opin. Biotechnol. 24, 214-219. crossref(new window)

Bosscher, D., Van Loo, J., and Franck, A. (2006) Inulin and oligofructose as prebiotics in the prevention of intestinal infections and diseases. Nutr. Res. Rev. 19, 216-226. crossref(new window)

Bottacini, F., Ventura, M., van Sinderen, D., and O'Connell Motherway, M. (2014) Diversity, ecology and intestinal function of bifidobacteria. Microb. Cell. Fact. 13, S4. crossref(new window)

Cardelle-Cobas, A., Corzo, N., Olano, A., Pelaez, C., Requena, T., and Avila, M. (2011) Galactooligosaccharides derived from lactose and lactulose: influence of structure on Lactobacillus, Streptococcus and Bifidobacterium growth. Int. J. Food Microbiol. 149, 81-87. crossref(new window)

Chichlowski, M., German, J. B., Lebrilla, C. B., and Mills, D. A. (2011) The influence of milk oligosaccharides on microbiota of infants: opportunities for formulas. Ann. Rev. Food Sci. Technol. 2, 331-351. crossref(new window)

Delcenserie, V., Gavini, F., China, B., and Daube, G. (2011) Bifidobacterium pseudolongum are efficient indicators of animal fecal contamination in raw milk cheese industry. BMC Microbiol. 11, 178. crossref(new window)

Delcenserie, V., Taminiau, B., Gavini, F., de Schaetzen, M. A., Cleenwerck, I., Theves, M., Mahieu, M., and Daube, G. (2013) Detection and characterization of Bifidobacterium crudilactis and B. mongoliense able to grow during the manufacturing process of French raw milk cheeses. BMC Microbiol. 13, 239. crossref(new window)

Delétoile, A., Passet, V., Aires, J., Chambaud, I., Butel, M. J., Smokvina, T., and Brisse, S. (2010) Species delineation and clonal diversity in four Bifidobacterium species as revealed by multilocus sequencing. Res. Microbiol. 161, 82-90. crossref(new window)

De Vuyst, L. and Leroy, F. (2011) Cross-feeding between bifidobacteria and butyrate-producing colon bacteria explains bifidobacterial competitiveness, butyrate production, and gas production. Int. J. Food Microbiol. 149, 73-80. crossref(new window)

De Vuyst, L., Moens, F., Selak, M., Rivière, A., and Leroy F. (2013) Summer Meeting 2013: growth and physiology of bifidobacteria. J. Appl. Microbiol. 116, 477-491.

Di Gioia, D., Aloisio, I., Mazzola, G., and Biavati, B. (2014) Bifidobacteria: their impact on gut microbiota composition and their applications as probiotics in infants. Appl. Microbiol. Biotechnol. 98, 563-577. crossref(new window)

Garrido, D., Ruiz-Moyano, S., Jimenez-Espinoza, R., Eom, H. J., Block, D. E., and Mills, D. A. (2013) Utilization of galactooligosaccharides by Bifidobacterium longum subsp. infantis isolates. Food Microbiol. 33, 262-270. crossref(new window)

German, J. B., Freeman, S. L., Lebrilla, C. B., and Mills, D. A. (2008) Human milk oligosaccharides: evolution, structures and bioselectivity as substrates for intestinal bacteria. Nestle Nutr. Workshop Ser. Pediatr. Program. 62, 205-218. crossref(new window)

Han, K. H., Kobayashi, Y., Nakamura, Y., Shimada, K., Aritsuka, T., Ohba, K., Morita, T., and Fukushima, M. J. (2014) Comparison of the effects of longer chain inulins with different degrees of polymerization on colonic fermentation in a mixed culture of Swine fecal bacteria. Nutr. Sci. Vitaminol. 60, 206-212. crossref(new window)

Kelly, V., Davis, S., Berry, S., Melis, J., Spelman, R., Snell, R., Lehnert, K., and Palmer, D. (2013) Rapid, quantitative analysis of 3'- and 6'-sialyllactose in milk by flow-injection analysis-mass spectrometry: screening of milks for naturally elevated sialyllactose concentration. J Dairy Sci. 12, 7684-7691.

Konstantinidis, K. T. and Tiedje, J. M. (2005) Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. U S A. 102, 2567-2572. crossref(new window)

Lee, J. H. and O'Sullivan, D. J. (2010) Genomic insights into bifidobacteria. Microbiol. Mol. Biol. Rev. 74, 378-416. crossref(new window)

Lugli, G. A., Milani, C., Turroni, F., Duranti, S., Ferrario, C., Viappiani, A., Mancabelli, L., Mangifesta, M., Taminiau, B., Delcenserie, V., van Sinderen, D., and Ventura M. (2014) Investigation of the evolutionary development of the genus Bifidobacterium by comparative genomics. Appl. Environ. Microbiol. 80, 6383-6394. crossref(new window)

Mehra, R., Barile, D., Marotta, M., Lebrilla, C. B., Chu, C., and German, J. B. (2014) Novel high-molecular weight fucosylated milk oligosaccharides identified in dairy streams. PLoS One. 9, e96040. crossref(new window)

Meli, F., Puccio, G., Cajozzo, C., Ricottone, G., Pecquet, S., Sprenger, N., and Steenhout, P. (2014) Growth and safety evaluation of infant formulae containing oligosaccharides derived from bovine milk: a randomized, double-blind, noninferiority trial. BMC Pediatr. 14, 306. crossref(new window)

Milani, C., Lugli, G.A., Duranti, S., Turroni, F., Bottacini, F., Mangifesta, M., Sanchez, B., Viappiani, A., Mancabelli, L., Taminiau, B., Delcenserie, V., Barrangou, R., Margolles, A., van Sinderen, D., and Ventura, M. (2014) Genomic encyclopedia of type strains of the genus Bifidobacterium. Appl. Environ. Microbiol. 80, 6290-6302. crossref(new window)

Pacheco, A. R., Barile, D., Underwood, M. A., and Mills, D. A. (2014) The impact of the milk glycobiome on the neonate gut microbiota. Annu. Rev. Anim. Biosci. Epub ahead of print DOI:10.1146

Rossi, M., Corradini, C., Amaretti, A., Nicolini, M., Pompei, A., Zanoni, S., and Matteuzzi, D. (2005) Fermentation of fructooligosaccharides and inulin by bifidobacteria: a comparative study of pure and fecal cultures. Appl. Environ. Microbiol. 71, 6150-6158. crossref(new window)

Scholtens, P. A., Goossens, D. A., and Staiano, A. (2014) Stool characteristics of infants receiving short-chain galacto-oligosaccharides and long-chain fructo-oligosaccharides: a review. World J. Gastroenterol. 20, 13446-13452. crossref(new window)

Sela, D. A., Chapman, J., Adeuya, A., Kim, J. H., Chen, F., Whitehead, T. R., Lapidus, A., Rokhsar, D. S., Lebrilla, C. B., German, J. B., Price, N. P., Richardson, P. M., and Mills, D. A. (2008) The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc. Natl. Acad. Sci. U S A. 105, 18964-189649. crossref(new window)

Sela, D. A. and Mills D. A. (2010) Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol. 18, 298-307. crossref(new window)

Sela, D. A. (2011) Bifidobacterial utilization of human milk oligosaccharides. Int. J. Food Microbiol. 149, 58-64. crossref(new window)

Smilowitz, J. T., Lebrilla, C. B., Mills, D. A., German, J. B., and Freeman, S. L. (2014) Breast milk oligosaccharides: structure-function relationships in the neonate. Ann. Rev. Nutr. 34, 143-169. crossref(new window)

Stackebrandt, E., Frederiksen, W., Garrity, G. M., Grimont, P. A., Kämpfer, P., Maiden, M. C., Nesme, X., Rosselló-Mora, R., Swings, J., Trüper, H. G., Vauterin, L., Ward, A. C., and Whitman, W. B. (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int. J. Syst. Evol. Microbiol. 52, 1043-1047. crossref(new window)

Stiverson, J., Williams, T., Chen, J., Adams, S., Hustead, D., Price, P., Guerrieri, J., Deacon, J., and Yu Z. (2014) A comparative evaluation of prebiotic oligosaccharides using in vitro cultures of infant fecal microbiome. Appl. Environ. Microbiol. 80, 7388-7397. crossref(new window)

Tanner, S. A., Chassard, C., Zihler Berner, A., and Lacroix C. (2014) Synergistic effects of Bifidobacterium thermophilum RBL67 and selected prebiotics on inhibition of Salmonella colonization in the swine proximal colon PolyFermS model. Gut Pathog. 6, 44. crossref(new window)

Tao, N., DePeters, E. J., Freeman, S., German, J. B., Grimm, R., and Lebrilla, C. B. (2008) Bovine milk glycome. J. Dairy Sci. 91, 3768-3778. crossref(new window)

Turroni, F., van Sinderen, D., and Ventura, M. (2011) Genomics and ecological overview of the genus Bifidobacterium. Int. J. Food Microbiol. 149, 37-44. crossref(new window)

Turroni, F., Peano, C., Pass, D. A., Foroni, E., Severgnini, M., Claesson, M. J., Kerr, C., Hourihane, J., Murray, D., Fuligni, F., Gueimonde, M., Margolles, A., De Bellis, G., O'Toole, P. W., van Sinderen, D., Marchesi, J. R., and Ventura, M. (2012) Diversity of bifidobacteria within the infant gut microbiota. PLoS One. 7, e36957. crossref(new window)

Turroni, F., Duranti, S., Bottacini, F., Guglielmetti, S., Van Sinderen, D., and Ventura, M. (2014) Bifidobacterium bifidum as an example of a specialized human gut commensal. Front. Microbiol. 5, 437.

Urashima, T., Taufik, E., Fukuda, K., and Asakuma, S. (2013) Recent advances in studies on milk oligosaccharides of cows and other domestic farm animals. Biosci. Biotechnol. Biochem. 77, 455-466. crossref(new window)

Van der Meulen, R., Adriany, T., Verbrugghe, K., and De Vuyst L. (2006) Kinetic analysis of bifidobacterial metabolism reveals a minor role for succinic acid in the regeneration of NAD+ through its growth-associated production. Appl. Environ. Microbiol. 72, 5204-5210. crossref(new window)

Ventura, M., Canchaya, C., Del Casale, A., Dellaglio, F., Neviani, E., Fitzgerald, G. F., and van Sinderen D. (2006) Analysis of bifidobacterial evolution using a multilocus approach. Int. J. Syst. Evol. Microbiol. 56, 2783-2792. crossref(new window)

Wu, S., Grimm, R., German, J. B., and Lebrilla, C. B. (2011) Annotation and structural analysis of sialylated human milk oligosaccharides. J. Proteome Res. 10, 856-868. crossref(new window)

Zivkovic, A. M. and Barile, D. (2011) Bovine milk as a source of functional oligosaccharides for improving human health. Adv. Nutr. 2, 284-289. crossref(new window)

Zoetendal, E. G., Rajilic-Stojanovic, M., and de Vos, W. M. (2008) High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 57, 1605-1615. crossref(new window)