Advanced SearchSearch Tips
Antilisterial Bacteriocin from Lactobacillus rhamnosus CJNU 0519 Presenting a Narrow Antimicrobial Spectrum
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Antilisterial Bacteriocin from Lactobacillus rhamnosus CJNU 0519 Presenting a Narrow Antimicrobial Spectrum
Jeong, Ye-Jin; Moon, Gi-Seong;
  PDF(new window)
A lactic acid bacterium presenting antimicrobial activity against a Lactobacillus acidophilus strain used for eradication of acid inhibition was isolated from a natural cheese. The 16S rRNA gene sequence of the isolate best matched with a strain of L. rhamnosus and was designated L. rhamnosus CJNU 0519. The antimicrobial activity of the partially purified bacteriocin of CJNU 0519 was abolished when treated with a protease, indicating the protein nature of the bacteriocin. The partially purified bacteriocin (rhamnocin 519) displayed a narrow antimicrobial activity against L. acidophilus, Listeria monocytogenes, and Staphylococcus aureus among several tested bacterial and yeast strains. Rhamnocin 519 in particular showed strong bactericidal action against L. monocytogenes.
bacteriocin;Lactobacillus rhamnosus;narrow-range spectrum;Listeria monocytogenes;probiotics;
 Cited by
Allen, H. K., Trachsel, J., Looft, T., and Casey, T. A. (2014) Finding alternatives to antibiotics. Ann. N. Y. Acad. Sci. 323, 91-100.

Bali, V., Panesar, P. S., and Bera, M. B. (2014) Trends in utilization of agro-industrial byproducts for production of bacteriocins and their biopreservative applications. Crit. Rev. Biotechnol. [Epub ahead of print]

Bali, V., Panesar, P. S., Bera, M. B., and Kennedy, J. F. (2014) Bacteriocins: recent trends and potential applications. Crit. Rev. Food Sci. Nutr. [Epub ahead of print]

Chung, D. M., Kim, K. E., Jeong, S. Y., Park, C. S., Ahn, K. H., Kim, D. H., Kang, D. O., Chun, H. K., Yoon, B. D., Koh, H. B., Kim, H. J., and Choi, N. S. (2011) Rapid concentration of some bacteriocin-like compounds using an organic solvent. Food Sci. Biotechnol. 20, 1457-1459. crossref(new window)

Cotter, P. D., Ross, R. P., and Hill, C. (2013) Bacteriocins - a viable alternative to antibiotics? Nat. Rev. Microbiol. 11, 95-105.

Cui, Y., Zhang, C., Wang, Y., Shi, J., Zhang, L., Ding, Z., Qu, X., and Cui, H. (2012) Class IIa bacteriocins: diversity and new developments. Int. J. Mol. Sci. 13, 16668-16707. crossref(new window)

Daeschel, M. A. (1992) Procedures to detect antimicrobial activities of microorganisms. In: Food biopreservatives of microbial origin. Ray, B. and Daeschel, M. (eds) CRC Press, FL, pp. 57-80.

Dimitrijević, R., Stojanović, M., Zivković, I., Petersen, A., Jankov, R. M., Dimitrijević, L., and Gavrović-Jankulović, M. (2009) The identification of a low molecular mass bacteriocin, rhamnosin A, produced by Lactobacillus rhamnosus strain 68. J. Appl. Microbiol. 107, 2108-2115. crossref(new window)

Drider, D., Fimland, G., Héchard, Y., McMullen, L. M., and Prévost, H. (2006) The continuing story of class IIa bacteriocins. Microbiol. Mol. Biol. Rev. 70, 564-582. crossref(new window)

Gahan, C. G. and Hill, C. (2014) Listeria monocytogenes: survival and adaptation in the gastrointestinal tract. Front Cell Infect. Microbiol. 4, 9.

Han, K. S., Kim, Y., Kim, S. H., and Oh, S. (2007) Characterization and purification of acidocin 1B, a bacteriocin produced by Lactobacillus acidophilus GP1B. J. Microbiol. Biotechnol. 17, 774-783.

Joerger, M. C. and Klaenhammer, T. R. (1990) Cloning, expression, and nucleotide sequence of the Lactobacillus helveticus 481 gene encoding the bacteriocin helveticin J. J. Bacteriol. 172, 6339-6347.

Klaenhammer, T. R. (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12, 39-86. crossref(new window)

Kwon, D. Y., Koo, M. S., Ryoo, C. R., Kang, C. H., Min, K. H., and Kim, W. J. (2002) Bacteriocin produced by Pediococcus sp. in kimchi and its characteristics. J. Microbiol. Biotechnol. 12, 96-105.

Lalpuria, M., Karwa, V., Anantheswaran, R. C., and Floros, J. D. (2013) Modified agar diffusion bioassay for better quantification of Nisaplin®. J. Appl. Microbiol. 114, 663-671. crossref(new window)

Larkin, E. A., Carman, R. J., Krakauer, T., and Stiles, B. G. (2009) Staphylococcus aureus: the toxic presence of a pathogen extraordinaire. Curr. Med. Chem. 16, 4003-4019. crossref(new window)

Lauková, A., Chrastinová, L., Plachá, I., Kandrièáková, A., Szabóová, R., Strompfová, V., Chrenková, M., Cobanová, K., and Zitòan, R. (2014) Beneficial effect of lantibiotic nisin in rabbit husbandry. Probiotics Antimicrob. Proteins 6, 41-46. crossref(new window)

Lee, K. H., Moon, G. S., An, J. Y., Lee, H. J., Chang, H. C., Chung, D. K., Lee, J. H., and Kim, J. H. (2002) Isolation of a nisin-producing Lactococcus lactis strain from kimchi and characterization of its nisZ gene. J. Microbiol. Biotechnol. 12, 389-397.

Lohans, C. T. and Vederas, J. C. (2012) Development of class IIa bacteriocins as therapeutic agents. Int. J. Microbiol. 2012, 386-410.

Markkula, A., Mattila, M., Lindström, M., and Korkeala, H. (2012) Genes encoding putative DEAD-box RNA helicases in Listeria monocytogenes EGD-e are needed for growth and motility at 3℃. Environ. Microbiol. 14, 2223-2232. crossref(new window)

Mehta, R., Arya, R., Goyal, K., Singh, M., and Sharma, A. K. (2013) Bio-preservative and therapeutic potential of pediocin: recent trends and future perspectives. Recent Pat. Biotechnol. 7, 172-178. crossref(new window)

Moon, G. S., Jeong, J. J., Ji, G. E., Kim, J. S., and Kim, J. H. (2000) Characterization of a bacteriocin produced by Enterococcus sp. T7 isolated from humans. J. Microbiol. Biotechnol. 10, 507-513.

Nes, I. F. and Holo, H. (2000) Class II antimicrobial peptides from lactic acid bacteria. Biopolymers 55, 50-61. crossref(new window)

Nilsen, T., Nes, I. F., and Holo, H. (2003) Enterolysin A, a cell wall-degrading bacteriocin from Enterococcus faecalis LMG 2333. Appl. Environ. Microbiol. 69, 2975-2984. crossref(new window)

Pawlowska, A. M., Zannini, E., Coffey, A., and Arendt, E. K. (2012) “Green preservatives”: combating fungi in the food and feed industry by applying antifungal lactic acid bacteria. Adv. Food Nutr. Res. 66, 217-238. crossref(new window)

Rea, M. C., Dobson, A., O'Sullivan, O., Crispie, F., Fouhy, F., Cotter, P. D., Shanahan, F., Kiely, B., Hill, C., and Ross, R. P. (2011) Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. Proc. Natl. Acad. Sci. USA 108 Suppl. 1, 4639-4644. crossref(new window)

Rodríguez, J. M., Martínez, M. I., and Kok, J. (2002) Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Crit. Rev. Food Sci. Nutr. 42, 91-121. crossref(new window)

Ross, R. P., Galvin, M., McAuliffe, O., Morgan, S. M., Ryan, M. P., Twomey, D. P., Meaney, W. J., and Hill, C. (1999) Developing applications for lactococcal bacteriocins. Antonie Van Leeuwenhoek 76, 337-346. crossref(new window)

Rossi, M. L., Paiva, A., Tornese, M., Chianelli, S., and Troncoso, A. (2008) Listeria monocytogenes outbreaks: a review of the routes that favor bacterial presence. Rev. Chilena Infectol. 25, 328-335.

Yu, Y., Zhang, Q., and van der Donk, W. A. (2013) Insights into the evolution of lanthipeptide biosynthesis. Protein Sci. 22, 1478-1489. crossref(new window)

Ward, L. J., Brown, J. C., and Davey, G. P. (1994) Application of the ligase chain reaction to the detection of nisinA and nisinZ genes in Lactococcus lactis ssp. lactis. FEMS Microbiol. Lett. 117, 29-33. crossref(new window)