Advanced SearchSearch Tips
Genome Analysis of Phage SMSAP5 as Candidate of Biocontrol for Staphylococcus aureus
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Genome Analysis of Phage SMSAP5 as Candidate of Biocontrol for Staphylococcus aureus
Lee, Young-Duck; Park, Jong-Hyun;
  PDF(new window)
In this study, we reported the morphogenetic analysis and genome sequence by genomic analysis of the newly isolated staphylococcal phage SMSAP5 from soil of slaughterhouses for cattle. Based on transmission electron microscopy evident morphology, phage SMSAP5 belonged to the Siphoviridae family. Phage SMSAP5 had a double-stranded DNA genome with a length of 45,552 bp and 33 % G+C content. Bioinformatics analysis of the phage genome revealed 43 open reading frames. A blastn search revealed that its nucleotide sequence shared a high degree of similarity with that of the Staphylococcus phage tp310-2. In conclusion, this study is the first report to show the morphological features and the complete genome sequence of the phage SMSAP5 from soil of slaughterhouses for cattle.
S. aureus;phage;genome;slaughterhouse;
 Cited by
Ackermann, H. W. (2007) 5500 Phages examined in the electron microscope. Arch. Virol. 152, 227-243. crossref(new window)

Altekruse, S. F., Cohen, M. L., and Swerdlow, D. L. (1997) Emerging food borne disease. Emerg. Infect. Dis. 3, 285-293. crossref(new window)

Bradley, G. S., and Teresa, K. (2005) Staphylococcal enterotoxins: A purging experience in review, Part I. Clin. Microbiol. Newsletter. 27, 179-186. crossref(new window)

Bunning, V. K., Lindsay, J. A., and Archer, D. L. (1997) Chronic health effects of microbial foodborne disease. World Health Stat. 50, 51-56.

Borch, E., Nesbakken, T., and Christensen, H. (1996) Hazard indentification in swine slaughter with respect to foodborne bacteria. Int. J. Food. Microbiol. 30, 9-25. crossref(new window)

Capparelli, R., Parlato, M., Borriello, G., Salvatore, P., and Iannelli, D. (2007) Experimental phage therapy against Staphylococcus aureus in mice. Antimicrob. Agents Chemother. 51, 2765-2773. crossref(new window)

Chambers, H. F. (2001) The changing epidemiology of Staphylococcus aureus? Emerg. Infect. Dis. 7, 178-182. crossref(new window)

Choi, Y. J. (2009) Antibacterial and biofilm removal activity of a podoviridae Staphylococcus aureus bacteriophage SAP-2 and a derived recombinant cell-wall-degrading enzyme. Appl. Microbiol. Biotechnol. 86, 1439-1449.

Dinnes, J., Deeks, J., Kunst, H., Gibson, A., Cummins, E., and Waugh, N. (2007) A systematic review of rapid diagnostic tests for the detection of tuberculosis infection. Health Technol. Assess. 11, 1-196.

Fessler, A. T., Billerbeck, C., Kadlec, K. and Schwarz, S. (2010) Identification and characterization of methicillin-resistant coagulase-negative staphylococci from bovine mastitis. J. Antimicrob. Chemother. 65, 1576-1582. crossref(new window)

García, P., Madera, C., Martínez, B., Rodríguez, A., and Evaristo Suárez, J. (2009) Prevalence of bacteriophages infecting Staphylococcus aureus in dairy samples and their potential as biocontrol agents. J. Dairy Sci. 92, 3019-3026. crossref(new window)

Greer, G. G. (2005) Bacteriophage control of foodborne bacteria. J. Food Prot. 68, 1102-1111. crossref(new window)

Hennekinne, J. A., De Buyser, M. L., and Dragacci, S. (2012) Staphylococcus aureus and its food poisoning toxins: Characterization and outbreak investigation. FEMS Microbiol. Rev. 36, 815-836. crossref(new window)

Holmberg, S. D. and Blake, P. A. (1984) Staphylococcal food poisoning in the United States. New facts and old misconceptions. JAMA. 251, 487-489. crossref(new window)

Hudson, J. A., Billington, C., Carey-Smith, G., and Greening, G. (2005) Bacteriophages as biocontrol agents in food. J. Food Prot. 68, 426-437. crossref(new window)

Jaglic, Z., Michu, E., Holasova, M., Vlkova, H., Babak, V., Kolar, M., Bardon, J., and Schlegelova, J. (2010) Epidemiology and characterization of Staphylococcus epidermidis isolates from humans, raw bovine milk and a dairy plant. Epidemiol. Infect. 138, 772-782. crossref(new window)

Katsura, I. and Hendrix, R. W. (1984) Length determination in bacteriophage lambda tails. Cell. 39, 691-698. crossref(new window)

MFDS (Ministry of Food and Drug Safety). (2005) Foodborne disease management. Available at: Accessed on Nov. 3, 2014.

Kim, T. (2001) The economic impact of methicillin-resistant Staphylococcus aureus in Canadian hospitals. Infect. Cont. Hosp. Epidemiol. 22, 99-104. crossref(new window)

Le Loir, Y., Baron, F., and Gautier, M. (2003) Staphylococcus aureus and food poisoning. Genet. Mol. Res. 31, 63-76.

Levine, W. C., Smart, J. F., Archer, D. L., Bean, N. H., and Tauxe, R. V. (1991) Foodborne disease outbreaks in nursing homes, 1975 through 1987. JAMA. 16, 2105-2109.

Lu, T. K. and Collins, J. J. (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc. Natl. Acad. Sci. USA 104, 11197-11202. crossref(new window)

Manfioletti, G. and Schneider, C. (1988) A new and fast method for preparing high quality lambda DNA suitable for sequencing. Nucleic Acids Res. 16, 2873-2884. crossref(new window)

Manoharadas, S., Witte, A., and Bläsi, U. (2009) Antimicrobial activity of a chimeric enzybiotic towards Staphylococcus aureus. J. Biotechnol. 139,118-123. crossref(new window)

Matsuzaki, S. Yasuda, M., Nishikawa, H., Kuroda, M., Ujihara, T. Shuin, T., Shen, Y., Jin, Z., Fujimoto, S., and Nasimuzzan, M.D. (2003) Experimental protection of mice against lethal Staphylococcus aureus infection by novel bacteriophage ΦMR11. J. Infect. Dis. 187, 613-624. crossref(new window)

Moodley, S., Maxwell, K. L., and Kanelis, V. (2012) The protein gp74 from the bacteriophage HK97 functions as a HNH endonuclease. Protein Sci. 21, 809-818. crossref(new window)

O’Flaherty, S., Coffey, A., Meaney, W., Fitzgerald, G. F., and Ross, R. P. (2005) The recombinant phage lysin LysK has a broad spectrum of lytic activity against clinically relevant staphylococci, including methicillin-resistant Staphylococcus aureus. J. Bacteriol. 187, 7161-7164. crossref(new window)

Pinchuk, I. V., Beswick, E. J., and Reyes, V. E. (2010) Staphylococcal enterotoxins. Toxins. 2, 2177-2197. crossref(new window)

Rodriguez, A. (2010) Use of logistic regression for prediction of the fate of Staphylococcus aureus in pasteurized milk in the presence of two lytic phages. Appl. Environ. Microbiol. 76, 6038-6046. crossref(new window)

Sambrook, J. and Russel, D. W. (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York.

Skippington, E. and Ragan, M. A. (2011) Lateral genetic transfer and the construction of genetic exchange communities. FEMS Microbiol. Rev. 35, 707-735. crossref(new window)

Sulakvelidze, A., Alavidze, Z., and Morris, J. G. (2001) Bacteriophage therapy. Antimicrob. Agents Chemother. 45, 649-659. crossref(new window)

van Duijkeren, E., Box, A. T., Heck, M. E., Wannet, W. J., and Fluit, A. C. (2004) Methicillin-resistant staphylococci isolated from animals. Vet. Microbiol., 103, 91-97. crossref(new window)

Withey, S., Cartmell, E., Avery, L. M., and Stephenson, T. (2005) Bacteriophages - potential for application in wastewater treatment processes. Sci. Total Environ. 339, 1-18. crossref(new window)

Wills, Q. F., Kerrigan, C., and Soothill, J. S. (2005) Experimental bacteriophage protection against Staphylococcus aureus abscesses in a rabbit model. Antimicrob. Agents Chemother. 49, 1220-1221. crossref(new window)

Wood, W. B., Conley, M. P., Lyle, H. L., and Dickson, R. C. (1978) Attachment of tail fibers in bacteriophage T4 assembly. J. Biol. Chem. 253, 2437-2445.

Young, R. (1992) Bacteriophage lysis: mechanism and regulation. Microbiol. Rev. 56, 430-481.