Advanced SearchSearch Tips
Screening and Characterization of Lactic Acid Bacteria Strains with Anti-inflammatory Activities through in vitro and Caenorhabditis elegans Model Testing
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Screening and Characterization of Lactic Acid Bacteria Strains with Anti-inflammatory Activities through in vitro and Caenorhabditis elegans Model Testing
Lee, Hye Kyoung; Choi, Sun-Hae; Lee, Cho Rong; Lee, Sun Hee; Park, Mi Ri; Kim, Younghoon; Lee, Myung-Ki; Kim, Geun-Bae;
  PDF(new window)
The present study was conducted to screen candidate probiotic strains for anti-inflammatory activity. Initially, a nitric oxide (NO) assay was used to test selected candidate probiotic strains for anti-inflammatory activity in cultures of the murine macrophage cell line, RAW 264.7. Then, the in vitro probiotic properties of the strains, including bile tolerance, acid resistance, and growth in skim milk media, were investigated. We also performed an in vitro hydrophobicity test and an intestinal adhesion assay using Caenorhabditis elegans as a surrogate in vivo model. From our screening, we obtained 4 probiotic candidate lactic acid bacteria (LAB) strains based on their anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW 264.7 cell cultures and the results of the in vitro and in vivo probiotic property assessments. Molecular characterization using 16S rDNA sequencing analysis identified the 4 LAB strains as Lactobacillus plantarum. The selected L. plantarum strains (CAU1054, CAU1055, CAU1064, and CAU1106) were found to possess desirable in vitro and in vivo probiotic properties, and these strains are good candidates for further investigations in animal models and human clinical studies to elucidate the mechanisms underlying their anti-inflammatory activities.
lactic acid bacteria;probiotics;anti-inflammatory;Caenorhabditis elegans;
 Cited by
Influences of quorum-quenching probiotic bacteria on the gut microbial community and immune function in weaning pigs, Animal Science Journal, 2017, 13443941  crossref(new windwow)
Alander, M., De Smet I., Nollet, L., Verstraete, W., von Wright, A., and Mattila-Sandholm, T. (1999) The effect of probiotic strains on the microbiota of the simulator of the human intestinal microbial ecosystem (SHIME). Int. J. Food. Microbiol. 46, 71-79. crossref(new window)

Argyri, A. A., Zoumpopoulou, G., Karatzas, K. A. G., Tsakalidou, E., Nychas, G. J. E., Panagou, E. Z., and Tassou, C. C. (2013) Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol. 33, 282-291. crossref(new window)

Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77, 71-94.

Byrd, J. C. and Bresalier, R. S. (2004) Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev. 23, 77-99. crossref(new window)

Carasi, P., Ambrosis, N. M., De Antoni, G. L., Bressollier, P., Urdaci, M. C., and Serradell Mde, L. (2014) Adhesion properties of potentially probiotic Lactobacillus kefiri to gastrointestinal mucus. J. Dairy Res. 81, 16-23. crossref(new window)

Choi, J. K., Lim, Y. S., Kim, H. J., Hong, Y. H., Ryu, B. Y., and Kim, G. B. (2012) Screening and characterization of Lactobacillus casei MCL strain exhibiting immunomodulation activity. Korean J. Food Sci. An. 32, 635-643. crossref(new window)

Chon, H., Choi, B., Lee, E., and Jeong, G. (2009) Immunomodulatory effects of specific bacterial component of Lactobacillus plantarum KFCC11389P on the murine macrophage cell line RAW 264.7. J. Appl. Microbiol. 107, 1588-1597. crossref(new window)

Duary, R. K., Rajput, Y. S., Batish, V. K., and Grover, S. (2011) Assessing the adhesion of putative indigenous probiotic lactobacilli to human colonic epithelial cells. Indian J. Med. Res. 134, 664-671. crossref(new window)

Feighery, L. M., Smith, P., O’Mahony, L., Fallon, P. G., and Brayden, D. J. (2008) Effects of Lactobacillus salivarius 433118 on intestinal inflammation, immunity status and in vitro colon function in two mouse models of inflammatory bowel disease. Dig. Dis. Sci. 53, 2495-1506. crossref(new window)

Food and Agriculture Organization of the United Nations. (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. (

Gilliland, S. E. and Walker, D. K. (1990) Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in human. J. Dairy Sci.73, 905-911. crossref(new window)

Green, L. C., Wagner, D. A., Glogowski, J., Skipper, J., Wishnok, J. S., and Tannenbaum, S. R. (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal. Biochem. 126, 131-138. crossref(new window)

Hedin, C., Whelani, K., and Lindsay, J. O. (2000) Evidence for the use of probiotics and probiotics in inflammatory bowel diseases: a review of clinical trials. Proc. Nutr. Sor. 66, 307-315.

Hyronimus, B., Le Marrec, C., HadjSassi, A., and Deschamps, A. (2000) Acid and bile tolerance of spore-forming lactic acid bacteria. Int. J. Food Microbiol. 61, 193-197. crossref(new window)

Jeong, I. Y., Lee, H. J., Jin, C. H., Park, Y. D., Choi, D. S., and Kang, M. A. (2010) Anti-inflammatory activity of Stevia rebaudiana in LPS-induced RAW 264.7 cells. J. Food Sci. Nutr. 15, 14-18. crossref(new window)

Karthikeyan, T., Pravin, M., Muthusamy, V. S., Raja, R. B., and Lakshmi, B. S. (2013) In vitro investigation of the immunomodulatory potential of probiotic Lactobacillus casei. Probiotics Antimicro. Prot. 5, 51-58. crossref(new window)

Kim, D. W., Cho, S. B., Yun, C. H., Jeong, H. Y., Chung, W. T., Choi, C. W., Lee, H. J., Nam I. S., Suh, H. H., Lee, S. S., and Lee, B. S. (2007) Induction of cytokines and nitric oxide in murine macrophages stimulated with enzymatically digested Lactobacillus strains. J. Microbiol. 45, 373-378.

Kim, Y. and Mylonakis, E. (2012) Caenorhabditis elegans immune conditioning with the probiotic bacterium Lactobacillus acidophilus strain NCFM enhances gram-positive immune responses. Infect. Immun. 80, 2500-2508. crossref(new window)

Korhonen, R., Korpela, R., and Moilanen, E. (2002) Signalling mechanisms involved in the induction of inducible nitric oxide synthase by Lactobacillus rhamnosus GG, endotoxin, and lipoteichoic acid. Inflammation 26, 207-214. crossref(new window)

Lee, E. K., Lee, N. K., Lee, S. K., Chang, H. I., and Paik, H. D. (2010) Screening of immunostimulatory probiotic lactic acid bacteria from chicken feces as animal probiotics. Korean J. Food Sci. An. 30, 634-640. crossref(new window)

Lee, H. S., Han, S. Y., Bae, E. A., Huh, C. S., Ahn, Y. T., Lee, J. H., and Kim, D. H. (2008) Lactic acid bacteria inhibit proinflammatory cytokine expression and bacterial glycosaminoglycan degradation activity in dextran sulfate sodium-induced colitic mice. Int. Immunopharmacol. 8, 574-580. crossref(new window)

Lee, S. K., Yang, K. M., Cheon, J. H., Kim, T. I., and Kim, W. H. (2012) Anti-inflammatory mechanism of Lactobacillus rhamnosus GG in lipopolysaccharide-stimulated HT-29 cell. Korean J. Gastroenterol. 60, 86-93. crossref(new window)

Leung, M. C. K., Williams, P. L., Benedetto, A., Au, C., Helmcke, K. J., Aschner, M., and Meyer, J. N. (2008) Caenorhabditis elegans: An emerging model in biomedical and environmental toxicology. Toxicol. Sci. 106, 5-28. crossref(new window)

Lorsbach, R. B., Murphy, W. J., Lowenstein, C. J., Snyder, S. H., and Russell, S. W. (1993) Expression of the nitric oxide synthase gene in mouse macrophages activated for tumor cell killing: molecular basis for the synergy between interferongamma and lipopolysaccharide. J. Biol. Chem. 268, 1908-1913.

Maldonado, G. C., Doreno, D., de LeBlanc, A., Vinderola, G., Bibas, B., Perdigo’nG, M. E. (2007) Proposed model: Mechanisms of immunomodulation induced by probiotic bacteria. Clin. Vaccine Immunol. 14, 485-492. crossref(new window)

Mcdonald, L. C., Fleming, H. P., and Hassan, H. M. (1990) Acid tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum. Appl. Environ. Microbiol. 56, 2120-2124.

McGhee, J. D. (2007) The C. elegans intestine. WormBook 27, 1-36.

Mishra, V. and Prasad, D. N. (2005) Application of in vitro methods for selection of Lactobacillus casei strains as potential probiotics. Int. J. Food Microbiol. 103, 109-115. crossref(new window)

Ouwehand, A. C. and Salminen, S. (2003) In vitro adhesion assays for probiotics and their in vivo relevance: a review. Microb. Ecol. Health Dis. 15, 175-184. crossref(new window)

Park, M. R., Yun, H. S., Son, S. J., Oh, S., and Kim, Y. (2014) Development of a direct in vivo screening model to identify potential probiotic bacteria using Caenorhabditis elegans. J. Dairy Sci. 97, 6828-6834. crossref(new window)

Perez, P. F., Minnaard, Y., Disalvo, E. A., and Antoni, G. L. (1998) Surface properties of bifidobacterial strains of human origin. Appl. Environ. Microb. 64, 21-26.

Valeriano, V. D., Parungao-Balolong, M. M., and Kang, D. K. (2014) In vitro evaluation of the mucin-adhesion ability and probiotic potential of Lactobacillus mucosae LM1. J. Appl. Microbiol. 117, 485-497. crossref(new window)

Van Tassell, M. L. and Miller, M. J. (2011) Lactobacillus adhesion to mucus. Nutrients 3, 613-636. crossref(new window)