Advanced SearchSearch Tips
Antilisterial Effect of Bacteriocin SH01, Obtained from Enterococcus faecium SH01, in Ground Beef
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Antilisterial Effect of Bacteriocin SH01, Obtained from Enterococcus faecium SH01, in Ground Beef
Kim, Min-Ju; Jung, Miran; Kim, Wang June;
  PDF(new window)
From the previous study, Enterococcus faecium SH01 was isolated from mukeunji, an over-ripened kimchi, and it produced bacteriocin SH01. Bacteriocin SH01 showed an inhibitory effect against Listeria monocytogenes ATCC 19111, a bacterial strain causing human listeriosis. Crude bacteriocin SH01 was purified by ammonium sulfate precipitation and its inhibitory activity at two concentrations (500 and 1,000 AU/g) against Listeria monocytogenes ATCC 19111 was investigated in ground beef at increasing temperatures (5, 10, 15, and 20℃) for 8 d. The number of Listeria monocytogenes ATCC 19111 significantly decreased (p<0.05) as the concentration of bacteriocin increased from 500 to 1,000 AU/g. Intrinsic crude protease activities in ground beef were examined and increased as the temperature increased. Experiments varying both the concentrations of added bacteriocin SH01 and temperature demonstrated a maximum inhibition (2.33 log reduction of bacteria) in samples containing 1,000 AU/g of bacteriocin SH01 incubated at 20℃. When the crude bacteriocin SH01 solution (1,280 AU/mL) was incubated with crude protease solutions at different temperatures, its activity decreased by only half (640 AU/mL), as assessed in an agar well diffusion assay. The finding that the antilisterial activity of bacteriocin SH01 increased with temperature can be explained by the fact that higher temperatures increase bacterial membrane fluidity, thereby promoting the cellular penetration of bacteriocin SH01 into L. monocytogenes. Bacteriocin SH01 may be an excellent candidate as a biopreservative for controlling L. monocytogenes growth in ground beef.
antilisterial bacteriocin SH01;ground beef;
 Cited by
Bacteriocins and bacteriophage; a narrow-minded approach to food and gut microbiology, FEMS Microbiology Reviews, 2017, 41, Supp_1, S129  crossref(new windwow)
Abee, T., Rombouts, F. M., Hugenholtz, J., Guihard, G., and Letellier, L. (1994) Mode of action of nisin Z against Listeria monocytogenes Scott A grown at high and low temperatures. Appl. Environ. Microbiol. 60, 1962-1968.

Castellano, P., Farías, M. E., Holzapfel, W., and Vignolo, G. (2001) Sensitivity variations of Listeria strains to the bacteriocins, lactocin 705, enterocin CRL35 and nisin. Biotechnol. Lett. 23, 605-608. crossref(new window)

Cho, J. I., Lee, S. H., Lim, J. S., Kwak, H. S., and Hwang, I. G. (2011a) Development of a predictive model describing the growth of Listeria monocytogenes in fresh cut vegetable. J. Food Hyg. Safety 26, 25-30.

Cho, J. I., Lee, S. H., Lim, J. S., Kwak, H. S., and Hwang I. G. (2011b) Predictive mathematical model for the growth kinetics of Listeria monocytogenes on smoked salmon. J. Food Hyg. Safety 26, 120-124.

Cho, S. H. and Kim, Y. R. (2001) Antimicrobial effects of Scutellariae Radix extract against Listeria monocytogenes. J. Kor. Soc. Food. Sci. Nutr. 30, 959-963.

Cleveland, J., Montville, T. J., Nes, I. F., and Chikindas, M. L. (2001) Bacteriocins: Safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71, 1-20. crossref(new window)

Eckner, K. F. (1992) Bacteriocins and food application. Dairy Food Environ. Sanit. 12, 204-209.

Jang, J. S., Lee, H. J., Oh, B. Y., Lee, J. M., Go, J. M., and Kim, Y. H. (2007) Inactivation of Escherichia coli O157:H7, Salmonella and Listeria monocytogenes by organic acid. Kor. J. Env. Hlth. 33, 403-407.

Kim, W. J. (1993) Bacteriocins of lactic acid bacteria: Their potentials as food biopreservative. Food Rev. Int. 9, 293-313.

Koseki, S. and Isobe, S. (2005) Prediction of pathogen growth on iceberg lettuce under real temperature history during distribution from farm to table. Int. J. Food Microbiol. 104, 239-248. crossref(new window)

Lee, W. W., Kim, B. J., Lim, K. J., and Shin, J. B. (1993) Effects of preservatives on inhibition and survival of Listeria monocytogenes. Kor. J. Vet. Serv. 16, 20-33.

Mazzotta, A. S. and Montville, T. J. (1997) Nisin induces changes in membrane fatty acid composition of Listeria monocytogenes nisin-resistant strains at 10℃ and 30℃. J. Appl. Microbiol. 82, 32-38. crossref(new window)

Moon, G. S., Kang, C. H., Pyun, Y. R., and Kim, W. J. (2004) Isolation, identification, and characterization of a bacteriocinproducing Enterococcus sp. from Kimchi and its application to Kimchi fermentation. J. Microbiol. Biotechnol. 14, 924-931.

Nielsen, J. W., Dickson, J. S., and Crouse, J. D. (1990) Use of a bacteriocin produced by Pediococcus acidilactici to inhibit Listeria monocytogenes associated with fresh meat. Appl. Environ. Microbiol. 56, 2142-2145.

Nieto-Lozano, J. C., Reguera-Useros, J. I., Pelaez-Martinez, M. D. C., and Hardisson de la Torre, A. (2006) Effect of a bacteriocin produced by Pediococcus acidilactici against Listeria monocytogenes and Clostridium perfringens on Spanish raw meat. Meat Sci. 72, 57-61. crossref(new window)

Pawar, D. D., Malik, S. V. S., Bhilegaonkar, K. N., and Barbuddhe, S. B. (2000) Effect of nisin and its combination with sodium chloride on the survival of Listeria monocytogenes added to raw buffalo meat mince. Meat Sci. 56, 215-219. crossref(new window)

Pucci, M. J., Vedamuthu, E. R., Kunka, B. S., and Vandenbergh, P. A. (1988) Inhibition of Listeria monocytogenes by using bacteriocin PA-1 produced by Pediococcus acidilactici PAC 1.0. Appl. Environ. Microbiol. 54, 2349-2353.

Schlech 3rd, W. F., Lavigne, P. M., Bortolussi, R. A., Allen, A. C., Haldane, E. V., Wort, A. J., Hightower, A. W., Johnson, S. E., King, S. H., Nicholls, E. S., and Broome, C. V. (1983) Epidemic listeriosis-evidence for transmission by food. N. Engl. J. Med. 308, 203-206. crossref(new window)

Seo, S. H., Jung, M., and Kim, W. J. (2014) Antilisterial and amylase-sensitive bacteriocin producing Enterococcus faecium SH01 from Mukeunji, a Korean over-ripened Kimchi. Food Sci. Biotechnol. 23, 1177-1184. crossref(new window)

Silva, J., Teixeira, P., Barbosa, J., Almeida, G., Santos, I., and Magalhaes, R. (2009) Listeriosis: is it a problem? N. Biotechnol. 25, S378.

Singh, B., Falahee, M. B., and Adams, M. R. (2001) Synergistic inhibition of Listeria monocytogenes by nisin and garlic extract. Food Microbiol. 18, 133-139. crossref(new window)

Solomakos, N., Govaris, A., Koidis, P., and Botsoglou, N. (2008) The antimicrobial effect of thyme essential oil, nisin, and their combination against Listeria monocytogenes in minced beef during refrigerated storage. Food Microbiol. 25, 120-127.

Sommers, C., Fan, X., Niemira, B. A., and Sokorai, K. (2003) Radiation (gamma) resistance and postirradiation growth of Listeria monocytogenes suspended in beef bologna containing sodium diacetate and potassium lactate. J. Food Prot. 66, 2051-2056. crossref(new window)

Swaminathan, B. and Gerner-Smidt, P. (2007) The epidemiology of human listeriosis. Microb. Infect. 9, 1236-1243. crossref(new window)

Thomas, L. V. and Wimpenny, J. W. (1996) Investigation of the effect of combined variations in temperature, pH, and NaCl concentration on nisin inhibition of Listeria monocytogenes and Staphylococcus aureus. Appl. Environ. Microbiol.62, 2006-2012.

Todd, E. C. D. and Notermans, S. (2011) Surveillance of listeriosis and its causative pathogens, Listeria monocytogenes.Food Cont. 22, 1484-1490. crossref(new window)

Vignolo, G., Fadda, S., De Kairuz, M. N., de Ruiz Holgado,A. P., and Oliver, G. (1996) Control of Listeria monocytogenes in ground beef by ‘Lactocin 705’, bacteriocin producedby Lactobacillus casei CRL 705. Int. J. Food Microbiol. 29, 397-402. crossref(new window)

Vignolo, G., Palacios, J., Farias, M. E., Sesma, F., Schillinger, U., Holzapfel, W., and Oliver, G. (2000) Combined effect of bacteriocins on the survival of various Listeria species in broth and meat system. Curr. Microbiol. 41, 410-416. crossref(new window)