Advanced SearchSearch Tips
Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry
Jeewanthi, Renda Kankanamge Chaturika; Lee, Na-Kyoung; Paik, Hyun-Dong;
  PDF(new window)
This review focuses on the enhanced functional characteristics of enzymatic hydrolysates of whey proteins (WPHs) in food applications compared to intact whey proteins (WPs). WPs are applied in foods as whey protein concentrates (WPCs), whey protein isolates (WPIs), and WPHs. WPs are byproducts of cheese production, used in a wide range of food applications due to their nutritional validity, functional activities, and cost effectiveness. Enzymatic hydrolysis yields improved functional and nutritional benefits in contrast to heat denaturation or native applications. WPHs improve solubility over a wide range of pH, create viscosity through water binding, and promote cohesion, adhesion, and elasticity. WPHs form stronger but more flexible edible films than WPC or WPI. WPHs enhance emulsification, bind fat, and facilitate whipping, compared to intact WPs. Extensive hydrolyzed WPHs with proper heat applications are the best emulsifiers and addition of polysaccharides improves the emulsification ability of WPHs. Also, WPHs improve the sensorial properties like color, flavor, and texture but impart a bitter taste in case where extensive hydrolysis (degree of hydrolysis greater than 8%). It is important to consider the type of enzyme, hydrolysis conditions, and WPHs production method based on the nature of food application.
whey protein;whey protein hydrolysate;enzymatic hydrolysis;functionality;food application;
 Cited by
Adding functionality to milk-based protein: Preparation, and physico-chemical characterization of β-lactoglobulin-phenolic conjugates, Food Chemistry, 2018, 241, 281  crossref(new windwow)
Protonation of β-lactoglobulin in the presence of strong polyelectrolyte chains: a study using Monte Carlo simulation, Colloids and Surfaces B: Biointerfaces, 2017, 160, 161  crossref(new windwow)
Development of protein fortified mango based ready-to-serve beverage, Journal of Food Science and Technology, 2016, 53, 10, 3844  crossref(new windwow)
Anti-Inflammatory and Antioxidant Properties of Peptides Released from β-Lactoglobulin by High Hydrostatic Pressure-Assisted Enzymatic Hydrolysis, Molecules, 2017, 22, 6, 949  crossref(new windwow)
Comparative analysis of mozzarella cheeses fortified with whey protein hydrolysates, diverse in hydrolysis time and concentrations, Journal of Food Science and Technology, 2016, 53, 9, 3566  crossref(new windwow)
Adler-Nissen, J. (1986) A Review of Food Protein Hydrolysis Specific Areas. In: Enzymatic hydrolysis of food proteins, Elsevier, London, England, pp. 57-109.

Agboola, S. O., Singh, H., Munro, P., Dalglesh, D. G., and Singh, A. M. (1998) Destabilization of oil-in-water emulsions formed using highly hydrolysed whey proteins. J. Agric. Food Chem. 46, 84-90. crossref(new window)

Athira, S., Mann, B., Saini, P., Sharma, R., Kumar, R., and Singh, A. K. (2014) Production and characterisation of whey protein hydrolysates having antioxidant activity from cheese whey. J. Sci. Food Agri. DOI 10.1002/jsfa.7032.

Barbut, S. (2007) Effect of hydrolyzed and regular dairy proteins on the texture, colour and microstructure of poultry meat emulsions. Br. Poult. Sci. 48, 655-660. crossref(new window)

Bouaouina, H., Desrumaux, A., Loisel, C., and Legrand, J. (2006) Functional properties of whey proteins as affected by dynamic high pressure treatment. Int. Dairy J. 16, 275-284. crossref(new window)

Bryant, C. and McClements, D. J. (1998) Molecular basis of cold-setting whey protein ingredients. Trends Food Sci. Technol. 9, 143-151. crossref(new window)

Burrington, K. (1999) Whey products in baked goods applications monograph - Bakery. U.S. Dairy Export Council. USA. eA2.1- eA2.8.

Creusot, N. and Gruppen, H. (2007a) Enzyme-induced aggregation and gelation of proteins. Biotech. Adv. 25, 597-601. crossref(new window)

Creusot, N. and Gruppen, H. (2007b) Protein peptide interactions in mixtures of whey peptides and whey proteins. J. Agric. Food Chem. 55, 2474-2481. crossref(new window)

Creusot, N. and Gruppen, H. (2008) Hydrolysis of whey protein isolate with Bacillus licheniformis protease: Aggregating capacities of peptide fractions. J. Agric. Food Chem. 56, 10332-10339. crossref(new window)

Creusot, N., Gruppen, H., Van Koningsveld, G. A., De Kruif, C. G., and Vorgen, A. G. J. (2006) Peptide-peptide and protein-peptide interactions in mixtures of whey protein isolate and whey protein isolate hydrolysates. Int. Dairy J. 16, 840-849. crossref(new window)

Davis, J. P., Doucet, D., and Foegeding, E. A. (2005) Foaming and interfacial properties of hydrolyzed β-lactoglobulin. J. Colloid Interface Sci. 288, 412-422. crossref(new window)

de Wit, J. N. (1998) Nutritional and functional characteristics of whey protein in food products. J. Dairy Sci. 81, 597-608. crossref(new window)

Decher, G. (1997) Fuzzy nanoassemblies: Toward layered polymeric multi-composites. Science 277, 1232-1237. crossref(new window)

Doucet, D. and Foegeding, E. A. (2005) Gel formation of peptides produced by extensive enzymatic hydrolysis of β-lactoglobulin. Biomacromolecules 6, 1140-1148. crossref(new window)

Doucet, D., Gauthier, S. F., and Foegeding, E. A. (2001) Rheological characterization of a gel formed during extensive enzymatic hydrolysis. J. Food Sci. 66, 711-715. crossref(new window)

Doucet, D., Gauthier, S. F., Otter, D. E., and Foegeding, E. A. (2003a) Enzyme-induced gelation of extensively hydrolyzed whey proteins by alcalase: Comparison with the plastein reaction and characterization interactions. J. Agric. Food Chem. 51, 6036-6042. crossref(new window)

Doucet, D., Otter, D. E., Gauthier, S. F., and Foegeding, E. A. (2003b) Enzyme-induced gelation of extensively hydrolyzed whey proteins by alcalase: Peptide identification and determination of enzyme specificity. J. Agric. Food Chem. 51, 6300-6308. crossref(new window)

Drake, M. A., Miracle, R. E., and Wright, J. M. (2009) Sensory Properties of Dairy Proteins. In: Milk proteins from expression to food. Thompson, A., Boland, M., and Singh, H. (eds) Elsevier, Amsterdam, The Netherlands. pp. 429-448.

Flanagan, J. and FitzGerald, R. J. (2002) Physicochemical and nitrogen solubility properties of Bacillus proteinase hydrolysates of sodium caseinate incubated with transglutaminase preand post-hydrolysis. J. Agric. Food Chem. 50, 5429-5436. crossref(new window)

Foegeding, E. A., Davis, J. P., Doucet, D., and McGuffey, M. K. (2002) Advances in modifying and understanding whey protein functionally. Trends Food Sci. Tech. 13, 151-159. crossref(new window)

Francis, F. J. and Wiley R. H. (2000) Whey: Composition, Properties, Processing and Uses. In: Wiley encyclopedia of food science and technology. 2nd Edition. New York, NY. pp. 2652-2661.

Gauthier, S. F., Paquin, P., Pouliot, Y., and Turgeon, S. (1993) Surface activity and related functional properties of peptides obtained from whey proteins. J. Dairy Sci. 76, 321-328. crossref(new window)

Goode, K. R., Bowen, J., Akhtar, N., Robbins, P. T., and Fryer, P. J. (2013) The effect of temperature on adhesion forces between surfaces and model foods containing whey protein and sugar. J. Food Eng. 118, 371-379. crossref(new window)

Groleau, P. E., Gauthier, S. F., and Pouliot, Y. (2003a) Effect of residual chymotryptic activity in a trypsin preparation on peptide aggregation in a β-lactoglobulin hydrolysate. Int. Dairy J. 13, 887-895. crossref(new window)

Groleau, P. E., Morin, P., Gauthier, S. F., and Pouliot, Y. (2003b) Effect of physicochemical conditions on peptide-peptide interactions in a tryptic hydrolysate of β-lactoglobulin and intensification of aggregating peptides. J. Agric. Food Chem. 51, 4370-4375. crossref(new window)

Guzey, D. and McClements, D. J. (2006) Formation, stability and properties of multilayer emulsions for application in the food industry. Adv. Colloid Interface Sci. 128, 227-248.

Huang, X. L., Catignani, G. L., and Swaisgood, H. E. (1999) Modication of rheological properties of whey protein isolates by limited proteolysis. Nahrung 43, 79-85. crossref(new window)

Innocente, N., Corradini, C., Blecker, C., and Paquot, M. (1998) Dynamic surface tension properties of the proteosepeptone fraction of bovine milk. J. Dairy Sci. 81, 1833-1839. crossref(new window)

Ipsen, R., Otte, J., Lomholt, S. T., and Qvist, K. B. (2000) Standardized reaction times used to describe the mechanism of enzyme-induced gelation in whey protein systems. J. Dairy Res. 67, 403-413. crossref(new window)

Ipsen, R., Otte, J., and Schumacher, E. (1997) Controlled stress rheometry compared with Formagraph measurements for characterization of the enzyme induced gelation of whey proteins at various pH. Ann. Trans. Nordic Rheology Society 5, 48-50.

Jeewanthi, R. K. C., Paik, H. D., Kim, M. H., Lee, N. K., Kim, S. Y., and Yoon, Y. C. (2014) Characteristics of whey protein hydrolysates from cheese whey, favors on various food applications. Chem. Ind. Chem. Eng. Q. 20, 503-509. crossref(new window)

Ju, Z. Y. and Kilara, A. (1998) Gelation of pH-aggregated whey protein isolate solution induced by heat, protease, calcium salt, and acidulant. J. Agric. Food Chem. 46, 1830-1835. crossref(new window)

Ju, Z. Y., Otte, J., Madsen, J. S., and Qvist, K. B. (1995) Effects of limited proteolysis on gelation and gel properties of whey protein isolate. J. Dairy Sci. 78, 2119-2128. crossref(new window)

Kang, I. J., Matsumura, Y., Ikura, K., Motoki, M., Sakamoto, H., and Mori, T. (1994) Gelation and gel properties of soybean glycinin in a transglutaminase-catalyzed system. J. Agric. Food Chem. 42, 159-165. crossref(new window)

Keaton, J. (1999) Whey protein and lactose products in processed meats, Applications monograph - Meat, Published by U.S. Dairy Export Council, eD2.1-eD2.8.

Kilara, A. and Panyam, D. (2003) Peptides from milk proteins and their properties. Crit. Rev. Food Sci. Nutr. 43, 607-633. crossref(new window)

Kim, S. B., Seo, I. S., Khan, M. A., Ki, K. S., Lee, W. S., Lee, H. J., Shin, H. S., and Kim, H. S. (2007) Enzymatic hydrolysis of heated whey: Iron-binding ability of peptides and antigenic protein fractions. J. Dairy Sci. 90, 4033-4042. crossref(new window)

Konrad, G., Kleinschmidt, T., Rohenkohl, H., and Reimerdes, E. H. (2005) Peptic partial hydrolysis of whey protein concentrate for modifying the surface properties of whey protein. II. Effects on the emulsifying and foaming properties. Milchwissenschaft 60, 195-198.

Kosikowski, F. V. (1979) Whey utilization and whey products. J. Dairy Sci. 62, 1149-1160. crossref(new window)

Kresic, G. and Lelas, V. Herceg, Z., and Rezek, A. (2006) Effects of high pressure on functionality of whey protein concentrate and whey protein isolate. Lait 86, 303-315. crossref(new window)

Kumar, S. K., Jayaprakasha, Manjappa H., Paik, H. D., Kim, S. K., Han, S. E., Jeong, A. R., and Yoon, Y. C. (2010) Production of ready-to-reconstitute functional beverages by utilizing whey protein hydrolysates and probiotics. Korean J. Food Sci. An. 30, 575-578. crossref(new window)

Madsen, J. S., Ahmt, T. O., Otte, J., Halkier, T., and Qvist, K. B. (1997) Hydrolysis of β-lactoglobulin by four different proteinases monitored by capillary electrophoresis and high performance liquid chromatography. Int. Dairy J. 7, 399-409. crossref(new window)

Mahmoud, M. I. (1994) Physicochemical and functional, properties of protein hydrolysates in nutritional products. Food Technol. 48, 89-95.

Majhi, P. R., Ganta, R. R., Vanam, R. P., Seyrek, E., Giger, K., and Dubin, P. L. (2006) Electrostatically driven protein aggregation: β-lactoglobulin at low ionic strength. Langmuir 22, 9150-9159. crossref(new window)

Mann, E. J. (2000) Whey products and their uses. Dairy Ind. Int. 65, 13-14.

Mate, J. I. and Krochta, J. M. (1996) Comparison of oxygen and water vapor permeabilities of whey protein isolate and β- lactoglobulin edible films. J. Agric. Food Chem. 44, 3001-3004. crossref(new window)

Matoba, T. and Hata, T. (1972) Relationship between bitterness of peptides and their chemical structures. Agric. Biol. Chem. 36, 1423-1431. crossref(new window)

McHugh, T. H. and Krochta, J. M. (1994) Sorbitol-plasticized vs. glycerol-plasticized whey-protein edible films: Integrated oxygen permeability and tensile property evaluation. J. Agric. Food Chem. 42, 841-845. crossref(new window)

Mehalebi, S., Nicolai, T., and Durand, D. (2008) Light scattering study of heat-denatured globular protein aggregates. Int. J. Biol. Macromol. 43, 129-135. crossref(new window)

Miller, K. S., Chiang, M. T., and Krochta, J. M. (1997) Heat curing of edible whey protein films. J. Food Sci. 62, 1189-1193. crossref(new window)

Morr, C. V. and Ha, E. Y. (1993) Whey protein concentrates and isolates: Processing and functional properties. Crit. Rev. Food Sci. Nutr. 33, 431-476. crossref(new window)

Mutilangi, W. A. M., Panyam, D., and Kilara, A. (1996) Functional properties of hydrolysates from proteolysis of heatdenatured whey protein isolate. J. Food Sci. 61, 270-275. crossref(new window)

Nakamura, T., Sado, H., Syukunobe, Y., and Hirata, T. (1993) Antigenicity of whey protein hydrolysates prepared by combination of two proteinases. Milchwissenschaft 48, 667-670.

Otte, J., Ju, Z. Y., Faergemand, M., Lomholt, S. B., and Qvist, K. B. (1996a) Protease-induced aggregation and gelation of whey proteins. J. Food Sci. 61, 911-923. crossref(new window)

Otte, J., Ju, Z. Y., Skriver, A., and Qvist, K. B. (1996b) Effect of limited proteolysis on the microstructure of heat-induced whey protein gels at varying pH. J. Dairy Sci. 79, 782-790. crossref(new window)

Otte, J., Schumacher, E., Ipsen, R., Ju, Z. Y., and Qvist, K. B. (1999) Protease-induced gelation of unheated and heated whey proteins: Effect of pH, temperature and concentrations of protein, enzyme and salts. Int. Dairy J. 9, 801-812. crossref(new window)

Pelegrine, D. H. G. and Gasparetto, C. A. (2005) Whey proteins solubility as function of temperature and pH. LWT-Food Sci. Technol. 38, 77-80. crossref(new window)

Pelegrine, D. H. G. and Gomes, M. T. M. S. (2012) Analysis of whey proteins solubility at high temperatures. Int. J. Food Eng. 3, 1556-3758.

Perea, A., Ugalde, U., Rodriguez, I., and Serra, J. L. (1993) Preparation and characterization of whey protein hydrolysates: Applications in industrial whey bioconversion processes. Enzyme Microb. Technol. 15, 418-423. crossref(new window)

Perez-Gago, M. B. and Krochta, J. M. (2002) Formation and Properties of Whey Protein Films and Coatings. In: Proteinbased films and coatings. Gennadios, A. (ed) CRC Press, Boca Raton, FL. pp.159-180.

Perez-Gago, M. B., Serra, M., and Del Río, M. A. (2006) Color change of fresh-cut apples coated with whey protein concentrate-based edible coatings. Postharvest Biol. Technol. 39, 84-92. crossref(new window)

Pinterits, A. and Arnteld, S. D. (2007) The effect of limited proteolysis on canola protein gelation. Food Chem. 102, 1337-1343. crossref(new window)

Pouliot, Y., Guy, M. M., Tremblay, M., Gaonac’h, A. C., Ting, B. P. C. P., Gauthier, S. F., and Voyer, N. (2009) Isolation and characterization of an aggregating peptide from a tryptic hydrolysate of whey proteins. J. Agric. Food Chem. 57, 3760-3764. crossref(new window)

Prabhu, G. (2006) U.S. Whey protein in processed meats. Application monograph processed meats, U.S. Dairy Export Council. e-3-6-1- e-3-6-12.

Rabiey, L. and Britten, M. (2009a) Effect of protein composition on the rheological properties acid-induced whey protein gels. Food Hydrocolloids 23, 973-979. crossref(new window)

Rabiey, L. and Britten, M. (2009b) Effect of whey protein enzymatic hydrolysis on the rheological properties acid-of acid induced whey protein gels. Food Hydrocolloids 23, 2302-2308. crossref(new window)

Rinn, J. C., Morr, C. V., Seo, A., and Surak, J. G. (1990) Evaluation of nine semi-pilot scale whey protein pre-treatment modifications for providing whey protein concentrates. J. Food Sci. 55, 510-515. crossref(new window)

Rios, G. M., Belleville, M. P., Paolucci, D., and Sanchez, J. (2004) Progress in enzymatic membrane reactors: A review. J. Membr. Sci. 242, 189-196. crossref(new window)

Rocha, C., Teixeria, J. A., Hilliou, L., Sampaio, P., and Goncalves, M. P. (2009) Rheological and structural characterization of gels from whey protein hydrolysates/locust bean gum mixed systems. Food Hydrocolloids 23, 1734-1745. crossref(new window)

Rullier, B., Axelos, M. A. V., Langevin, D., and Novales, B. (2010) β-lactoglobulin aggregates in foam films: Effect of the concentration and size of the protein aggregates. J. Colloid Interface Sci. 343, 330-337. crossref(new window)

Schmid, M. (2013) Properties of cast films made from different ratios of whey protein isolate, hydrolysed whey protein isolate and glycerol, Materials 6, 3254-3269. crossref(new window)

Schmid, M., Hinz, L. V., Wild, F., and Noller, K. (2013) Effects of hydrolysed whey proteins on the techno-functional characteristics of whey protein-based films. Materials 6, 927-940. crossref(new window)

Schmitt, C., Bovay, C., Vuilliomenet, A., Rouvet, M., Bovetto, L., Barbar, R., and Sanchez, C. (2009) Multi-scale characterization of individualized β-lactoglobulin micro gels formed upon heat treatment under narrow pH range conditions. Langmuir 25, 7899-7909. crossref(new window)

Sharma, S., Singh, R., and Rana, S. (2011) Bioactive peptides: Review, Int. J. Bioautomation 15, 223-250.

Sinha, R., Radha, C., Prakash, J., and Kaul, P. (2007) Whey protein hydrolysate: Functional properties, nutritional quality and utilization in beverage formulation. Food Chem. 101, 1484-1491. crossref(new window)

Smith, K. (2004) Whey processing CDR technical review: Bleaching. Wisconsin Center for Dairy Research, Madison. pp. 1-17.

Smithers, G. W. (2008) Whey and whey proteins-from ‘gutter-to-gold’. Int. Dairy J. 18, 695-704. crossref(new window)

Sothornvit, R. and Krochta, J. M. (2000a) Oxygen permeability and mechanical properties of films from hydrolyzed whey protein. J. Agric. Food Chem. 48, 3913-3916. crossref(new window)

Sothornvit, R. and Krochta, J. M. (2000b) Water vapor permeability and solubility of films from hydrolyzed whey protein. J. Food Sci. 65, 700-703. crossref(new window)

Sousa, J. R. R., Lopes, G. P., Tardioli, P. W., Giordano, R. L. C., Almeida, P. I. F., and Giordano, R. C. (2004) Kinetic model for whey protein hydrolysis by alcalase multipoint-immobilized on agarose gel particles. Braz. J. Chem. Eng. 21, 147-153. crossref(new window)

Spellman, D., Kenny, P., O'Cuinn, G., and FitzGerald, R. J. (2005) Aggregation properties of whey protein hydrolysates generated with Bacillus licheniformis proteinase activities. J. Agric. Food Chem. 5, 1258-1265.

Spellman, D., O’Cuinn, G., and FitzGerald, R. J. (2009) Bitterness in Bacillus proteinase hydrolysates of whey proteins. Food Chem. 114, 440-446. crossref(new window)

Suarez, E., San Martin, F., Alvarez, R., and Coca, J. (1992) Reverse osmosis of whey. Determination of mass transfer coefficients. J. Membr. Sci. 68, 301-305. crossref(new window)

Tomaino, R. M., Turner, L. G., and Larick, D. K. (2004) The effect of Lactococcus lactis starter cultures on the oxidative stability of liquid whey. J. Dairy Sci. 87, 300-307. crossref(new window)

Tsai, S. J., Unklesbay, N., Unklesbay, K., and Clarke, A. (1998) Water and absorption properties of restructured beef products with five binders at four isothermal temperatures. LWT-Food Sci. Technol. 31, 78-83. crossref(new window)

Turgeon, S. L., Gauthier, S. F., and Paquin, P. (1991) Interfacial and emulsifying properties of whey fractions obtained with a two-step ultrafiltration process. J. Agric. Food Chem. 39, 673-676. crossref(new window)

van der Ven, C., Gruppen, H., De Bont, D. B. A., and Voragen, A. G. J. (2002) Correlations between biochemical characteristics and foam-forming and stabilizing ability of whey and casein hydrolysates. J. Agric. Food Chem. 50, 2938-2946. crossref(new window)

Voutsinas, L. P. and Nakai, S. (1983) A simple turbidimetric method for determining the fat binding capacity of proteins. J. Agric. Food Chem. 31, 58-59. crossref(new window)

Wright, B. J., Zevchak, S. E., Wright, J. M., and Drake, M. A. (2009) The impact of agglomeration and storage on flavor and flavor stability of whey protein 80% and whey protein isolate. J. Food Sci. 74, 17-29.

Ye, A., Hemar, Y., and Singh, H. (2004) Flocculation and coalescence of droplets in oil-in-water emulsions formed with highly hydrolysed whey proteins as influenced by starch. Colloid. Surface. B. 38, 1-9. crossref(new window)

Ye, A. and Singh, H. (2006) Heat stability of oil-in-water emulsions formed with intact or hydrolysed whey proteins: Influence of polysaccharides. Food Hydrocolloids 20, 269-276. crossref(new window)

Yi, J. and Ding, Y. (2014) Dual effects of whey protein isolates on the inhibition of enzymatic browning and clarification of apple juice. Czech J. Food Sci. 32, 601-609.

Yoon, Y. C., An, S. I., Jeong, A. R., Han, S. E., Kim, M. H., and Lee, C. K. (2010) Characteristics of whey protein (WPC-30) hydrolysates from cheese whey. J. Animal Sci. Tech. 52, 435-440. crossref(new window)

Zhu, H. and Damodaran, S. (1994) Proteose-peptones and physical factors affect foaming properties of whey protein isolate. J. Food Sci. 59, 554-560. crossref(new window)