JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Comparison of Antioxidant Activities of Hydrolysates of Domestic and Imported Skim Milk Powders Treated with Papain
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Comparison of Antioxidant Activities of Hydrolysates of Domestic and Imported Skim Milk Powders Treated with Papain
Ha, Go Eun; Chang, Oun Ki; Han, Gi Sung; Ham, Jun Sang; Park, Beom-Young; Jeong, Seok-Geun;
  PDF(new window)
 Abstract
Milk proteins have many potential sequences within their primary structure, each with a specific biological activity. In this study, we compared and investigated the bioactivities of hydrolysates of the domestic (A, B) and imported (C, D) skim milk powders generated using papain digestion. MALDI-TOF analysis revealed that all milk powder proteins were intact, indicating no autolysis. Electrophoretic analysis of hydrolysates showed papain treatment caused degradation of milk proteins into peptides of various size. The antioxidant activity of the hydrolysates, determined using 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and total phenolic contents (TPC) assays, increased with incubation times. In all skim milk powders, the antioxidant activities of hydrolysates were highest following 24 h papain treatment (TPC: A, 196.48 μM GE/L; B, 194.52 μM GE/L; C, 194.76 μM GE/L; D, 163.75 μM GE/L; ABTS: A, 75%; B, 72%; C, 72%; D, 57%). The number of peptide derived from skim milk powders, as determined by LC-MS/MS, was 308 for A, 283 for B, 208 for C, and 135 for D. Hydrolysate A had the highest antioxidant activity and the most potential antioxidant peptides amongst the four skim milk powder hydrolysates. A total of 4 β-lactoglobulin, 4 αs1-casein, and 56 β-casein peptide fragments were identified as potential antioxidant peptides in hydrolysate A by LC-MS/MS. These results suggest that domestic skim milk could have applications in various industries, i.e., in the development of functional foods.
 Keywords
antioxidant activity;skim milk powder;hydrolysis;antioxidant peptides;papain;
 Language
English
 Cited by
1.
Short communication: Hypolipidemic and antiinflammatory effects of fermented Maillard reaction products by Lactobacillus fermentum H9 in an animal model, Journal of Dairy Science, 2016  crossref(new windwow)
 References
1.
Al-Laith, A. A. A. (2010) Antioxidant components and antioxidant/antiradical activities of desert truffle (Tirmania nivea) from various Middle Eastern origins. J. Food Comp. Anal. 23, 15-22. crossref(new window)

2.
Cervato, G., Cazzola, R., and Cestaro, B. (1999) Studies on the antioxidant activity of milk caseins. Int. J. Food Sci. Nutr. 50, 291-296. crossref(new window)

3.
Chang, O. K., Ha, G. E., Han, K. S., Seol, K, H., Kim, H. W., Jeong, S. G., Oh, M. H., Park, B. Y., and Ham, J. S. (2013a) Novel antioxidant peptide derived from the ultrafiltrate of ovomucin hydrolysate. J. Agri. Food Chem. 61, 7294-7300. crossref(new window)

4.
Chang, O. K., Ha, G. E., Jeong, S. G., Seol, K.H., Oh, M. H., Kim, D. W., Jang, A., Kim, S.H., Park, B. Y., and Ham, J. S. (2013b) Antioxidant activity of porcine skin gelatin hydrolyzed by pepsin and pancreatin. Korean J. Food Sci. An. 33, 493-500. crossref(new window)

5.
Chang, O. K., Seol, K. H., Jeong, S. G., Oh, M. H., Park, B. Y., Perrin, C., and Ham, J. S. (2013c) Casein hydrolysis by Bifidobacterium longum KACC91563 and antioxidant activities of peptides derived therefrom. J. Dairy Sci. 96, 5544-5555. crossref(new window)

6.
Choi, S. K. (2013) Trend of agricultural import from FTA partners. Korea Rural Economic Institute 1, 1-44.

7.
Clare, D. A. and Swaisgood, H. E. (2000) Bioactive milk peptides: A prospectus. J. Dairy Sci. 83, 1187-1195. crossref(new window)

8.
Colbert, L. B. and Decker, E. A. (1991) Antioxidant activity of an ultrafiltration permeate from acid whey. J. Food Sci. 56, 1248-1250. crossref(new window)

9.
Gupta, N., Hixson, K. K., Culley, D. E., Smith, R. D., and Pevzner, P. A. (2010) Analyzing protease specificity and detecting in vivo proteolytic events using tandem mass spectrometry. Proteomics 10, 2833-2844. crossref(new window)

10.
Ham, J. S., Han, G. S., Jeong, S. G., Seol, K. H., Jang, A. R., Oh, M. H., Kim, D. H., and Park, Y. W. (2012) Determination of molecular weights of caprine milk proteins by matrix-assisted laser desorption/ionization mass spectrometry. J. Dairy Sci. 95, 15-19. crossref(new window)

11.
Haque, E., Chand, R., and Kapila, S. (2009) Biofunctional properties of bioactive peptides of milk origin. Food Rev. Int. 25, 28-43.

12.
Hernandez-Ledesma, B., Amigo, L., Ramos, M., and Recio, I. (2004) Angiotensin converting enzyme inhibitory activity in commercial fermented products. Formation of peptides under simulated gastrointestinal digestion. J. Agri .Food Chem. 52, 1504-1510. crossref(new window)

13.
Hernández-Ledesma, B., Dávalos, A., Bartolomé, B., and Amigo, L. (2005) Preparation antioxidant enzymatic hydrolysates from α-lactalbumin and β-lactoglobulin. Identification of active peptides by HPLC-MS/MS. J. Agri. Food Chem. 53, 588-593. crossref(new window)

14.
Kilara, A. and Panyam, D. (2003) Peptides from milk proteins and their properties. Critical reviews. Food Sci. Nutr. 43, 607-633.

15.
Kim, D. W., Park, K., Ha, G., Jung, J. R., Chang, O., Ham, J. S., and Jang, A. (2013) Anti-oxidative and neuroprotective activities of pig skin gelatin hydrolysates. Korean J. Food Sci. An. 33, 258-267. crossref(new window)

16.
Kim, S. Y., Je, J. Y., and Kim, S. K. (2007) Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion. J. Nutr. Biochem. 18, 31-38. crossref(new window)

17.
Korhonen, H. (2009) Milk-derived bioactive peptides: From science to applications. J. Funct. Foods 1, 177-187. crossref(new window)

18.
Korhonen, H. and Pihlanto, A. (2003) Food-derived bioactive peptides-opportunities for designing future foods. Curr. Pharm. Des. 9, 1297-1308. crossref(new window)

19.
Korhonen, H. and Pihlanto, A. (2007) Bioactive peptides from food proteins. In: Hui Y. H. (ed.) Handbook of food products manufacturing. Hoboken, NJ: John Wiley and Sons Inc., 5-37.

20.
Kovatcheva, E. G., Koleva, I. I., Ilieva, M., Pavlov, A., Mincheva, M., and Konushlieva, M. (2001) Antioxidant activity of extracts from Lavandula vera MM cell cultures. Food Chem. 72, 295-300. crossref(new window)

21.
López-Expósito, I., Quirós, A., Amigo, L., and Recio, I. (2007) Casein hydrolysates as a source of antimicrobial, antioxidant and antihypertensive peptides. Le Lait 87, 241-249. crossref(new window)

22.
Mao, X. Y., Cheng, X., Wang, X., and Wu, S. J. (2011). Freeradical-scavenging and anti-inflammatory effect of yak milk casein before and after enzymatic hydrolysis. Food Chem. 126, 484-490. crossref(new window)

23.
Meisel, H., Walsh, D. J., Murray, B. A., and FitzGerald, R. J. (2006) ACE inhibitory peptides. In: Mine, Y. and Shahidi, F. (eds) Nutraceutical proteins and peptides in health and disease. Nutraceutical Sci. Technol. 269-315.

24.
Miclo, L., Roux, E., Genay, M., Brusseaux, E., Poirson, C., Jameh, N., Perrin, C., and Dary, A. (2012) Variability of hydrolysis of β-, αs1-, and αs2-caseins by 10 strains of Streptococcus thermophilus and resulting bioactive peptides. J. Agr. Food Chem. 60, 554-565. crossref(new window)

25.
Ong, K. L., Cheung, B. M., Man, Y. B., Lau, C. P., and Lam, K. S. (2007) Prevalence, awareness, treatment, and control of hypertension among United States adults 1999-2004. Hypertension, 49, 69-75. crossref(new window)

26.
Pihlanto, A., Korhhonen, H., and Jauregi P. (2009) Production of novel ACE inhibitory peptides from β-lacoglobulin using Protease N Amino. Int. Dairy J. 19, 69-76. crossref(new window)

27.
Rajapakse, N., Mendis, E., Byun, H. G., and Kim, S. K. (2005) Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. J. Nutr. Biochem. 16, 562-569. crossref(new window)

28.
Rao, S., Sun, J., Liu, Y., Zeng, H., Su, Y., and Yang, Y. (2012) ACE inhibitory peptides and antioxidant peptides derived from in vitro digestion hydrolysate of hen egg white lysozyme. Food Chem. 135, 1245-1252. crossref(new window)

29.
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., and Rice-Evans, C. (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231-1237. crossref(new window)

30.
Ren, J., Zhao, M., Shi, J., Wang, J., Jiang, Y., Cui, C., and Xue, S. J. (2008) Purification and identification of antioxidant peptides from grass carp muscle hydrolysates by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chem. 108, 727-736. crossref(new window)

31.
Rival, S. G., Boeriu, C. G., and Wichers, H. J. (2001a) Caseins and casein hydrolysates. 2. Antioxidative properties and relevance to lipoxygenase inhibition J. Agri. Food Chem. 49, 295-302 crossref(new window)

32.
Rival, S. G., Fornaroli, S., Boeriu, C. G., and Wichers, H. J. (2001b) Caseins and casein hydrolysates. 1. Lipoxygenase inhibitory properties. J. Agri. Food Chem. 49, 287-294. crossref(new window)

33.
Sadat, L., Cakir-Kiefer, C., N’Negue, M. A., Gaillard, J. L., Girardet, G. M., and Miclo, L. (2011) Isolation and identification of antioxidative peptides from bovine α-lactalbumin. Int. Dairy J. 21, 214-221. crossref(new window)

34.
Sarmadi, B. H. and Ismail, A. (2010) Antioxidative peptides from food proteins: A review. Peptides 31, 1949-1956. crossref(new window)

35.
Serafini, M. and Del Rio, D. (2004) Understanding the association between dietary antioxidants, redox status and disease: Is the total antioxidant capacity the right tool? Redox report, 9, 145-152. crossref(new window)

36.
Silva, S., Gomes, L., Leitao, F., Coelho, A. V., and Boas, L. V. (2006) Phenolic compounds and antioxidant activity of Olea europaea L. fruits and leaves. Food Sci. Technol. Int. 12, 385-395. crossref(new window)

37.
Silva, S. V. and Malcata, F. X. (2005) Caseins as source of bioactive peptides. Int. Dairy J. 15, 1-15. crossref(new window)

38.
Steijns, J. M. and Van Hooijdonk, A. C. M. (2000) Occurrence, structure, biochemical properties and technological characteristics of lactoferrin. British J. Nutri. 84, 11-17.

39.
Suetsuna, K., Ukeda, H., and Ochi, H. (2000) Isolation and characterization of free radical scavenging activities peptides derived from casein. J. Nutr. Biochem. 11, 128-131. crossref(new window)

40.
Taylor, M. J. and Richardson, T. (1980) Antioxidant oxidant of skim milk: effect of heat and resultant sulfhydryl groups. J. Dairy Sci. 63, 1783-1795 crossref(new window)

41.
Tong, L. M., Sasaki, S., McClements, D. J., and Decker, E. A. (2000) Mechanisms of the antioxidant activity of a high molecular weight fraction of whey. J. Agri. Food Chem. 48, 1473-1478. crossref(new window)

42.
Yang, S. A., Im, N. K., Ji, Y. J., Yoo, D. C., Jhee, K. H., and Lee, I. S. (2008) Radical scavenging and inhibition of platelet function by a polyphenol-rich fraction from Salvia miltiorrhiza Bunge. Open Nat. Prod. J. 1, 7-13. crossref(new window)