Advanced SearchSearch Tips
Screening of Immune-Active Lactic Acid Bacteria
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Screening of Immune-Active Lactic Acid Bacteria
Hwang, E-Nam; Kang, Sang-Mo; Kim, Mi-Jung; Lee, Ju-Woon;
  PDF(new window)
The purpose of this study was to investigate the effect of lactic acid bacteria (LAB) cell wall extract on the proliferation and cytokine production of immune cells to select suitable probiotics for space food. Ten strains of LAB (Lactobacillus bulgaricus, L. paracasei, L. casei, L. acidophilus, L. plantarum, L. delbruekii, Lactococcus lactis, Streptococcus thermophilus, Bifidobacterium breve, and Pedicoccus pentosaceus) were sub-cultured and further cultured for 3 d to reach 7-10 Log colony-forming units (CFU)/mL prior to cell wall extractions. All LAB cell wall extracts failed to inhibit the proliferation of BALB/c mouse splenocytes or mesenteric lymphocytes. Most LAB cell wall extracts except those of L. plantarum and L. delbrueckii induced the proliferation of both immune cells at tested concentrations. In addition, the production of TH1 cytokine (IFN-γ) rather than that of TH2 cytokine (IL-4) was enhanced by LAB cell wall extracts. Of ten LAB extracts, four (from L. acidophilus, L. bulgaricus, L. casei, and S. thermophiles) promoted both cell proliferating and TH1 cytokine production. These results suggested that these LAB could be used as probiotics to maintain immunity and homeostasis for astronauts in extreme space environment and for general people in normal life.
lactic acid bacteria;cell wall extracts;proliferation;TH1 cytokine IFN-γ;TH2 cytokine IL-4;
 Cited by
Amrouche, T., Boutin, Y., Prioult, G., and Fliss, I. (2006) Effects of bifidobacterial cytoplasm, cell wall and exopolysaccharide on mouse lymphocyte proliferation and cytokine production. Int. Dairy J. 16, 70-80. crossref(new window)

Arendt, E. K., Moroni, A., and Zannini, E. (2011) Medical nutrition therapy: Use of sourdough lactic acid bacteria as cell factory for delivering functional biomolecules and food ingredients in gluten free bread. Microb. Cell Fact. 10, S15. crossref(new window)

Ball, J. R. and Evans Jr., C. H. (2001) Safe passage: Astronaut care for exploration missions. In Committee on Creating a Visionfor Space Medicine During Travel Beyond Earth Orbit,Board on Health Sciences Policy, Washington, DC, USA, National Academy.

Behera, A. K., Kumar, M., Lockey, R. F., and Mohapatra, S. S. (2002) Adenovirus-mediated interferon gene therapy for allergic asthma: Involvement of interleukin 12 and STAT4 signaling. Hum. Gene Ther. 13, 1697-1709. crossref(new window)

Bhattacharyya, B. K. (2009) Emergence of probiotics in therapeutic applications. Int. J. Pharm. Sci. Nanotechnol. 2, 383-389.

Brown, S., Santa Maria Jr. J. P., and Walker, S. (2013) Wall teichoic acids of gram-positive bacteria. Annu. Rev. Microbiol. 67, 1-28. crossref(new window)

Crucian, B. and Sams, C. (2009) Immune system dysregulation during spaceflight: Clinical risk for exploration-class missions. J. Leukocyte Biol. 86, 1017-1018. crossref(new window)

Delcour, J., Ferain, T., Deghorain, M., Palumbo, E., and Hols, P. (1999) The biosynthesis and functionality of the cell-wall of lactic acid bacteria. A. Van Leeuw. J. Microb 76, 159-184. crossref(new window)

Fujiwara, D., Inoue, S., Wakabayashi, H., and Fujii, T. (2004) The anti-allergic effects of lactic acid bacteria are strain dependent and mediated by effects on both Th1/Hh2 cytokine expression and balance. Int. Arch. Allergy Immunol. 135, 205-215. crossref(new window)

Garimella, R., Halye, J. L., Harrison, W., Klebba, P. E., and Rice C. V. (2009) Conformation of the phosphate D-alanine zwitterion in bacterial teichoic acid from nuclear magnetic resonance spectroscopy. Biochemistry 48, 9242-9249. crossref(new window)

Ghadimi, D., de Vrese, M., Heller, K. J., and Schrezenmeir, J. (2010) Lactic acid bacteria enhance autophagic ability of mononuclear phagocytes by increasing Th1 autophagy-promoting cytokine (IFN-γ) and nitric oxide (NO) level and reducing Th2 autophagy-restraining cytokines (IL-4 and IL-13) in response to Mycobacterium tuberculosis antigen. Int. Immunopharmacol. 10, 694-706. crossref(new window)

Ghadimi, D., Flster-Holst, R., de Vrese, M., Winkler, P., Heller, K. J., and Schrezenmeir, J. (2008) Effects of probiotic bacteria and their genomic DNA on TH1/TH2-cytokine production by peripheral blood mononuclear cells (PBMCs) of healthy and allergic subjects. Immunobiol. 213, 677-692. crossref(new window)

Holt, P. G., Sly, P. S., and Bjrkstn, B. (1997) Atopic versus infectious diseases in childhood: A question of balance? Pediatr. Allergy Immunol. 8, 53-58. crossref(new window)

Hwang, E. N., Kang, S. M., Kim, J. K., Lee, J. W., and Park, J. H. (2013) Screening of radio-resistant lactic acid bacteria. Korea J. Food Sci. An. 33, 335-340. crossref(new window)

Ilyin, V. K. (2005) Microbiological status of cosmonautics during orbital spaceflight on Salyut and Mir orbital station. Acta Astronaut. 56, 839-850. crossref(new window)

Isolauri, E., Salminen, S., and Ouwehand, A. C. (2004) Probiotics. Best Prac. Res. Cl. Em. 18, 299-313. crossref(new window)

Iwabuchi, N., Takahashi, N., Xiao, J., Miyagi, K., and Iwatsuki, K. (2007) In vitro Th1 cytokine-independent Th2 supressive effects of bifidobacteria. Microbiol. Immunol. 51, 649-660. crossref(new window)

Kalka-Moll, W. M., Tzianabos, A. O., Bryant, P. W., Niemeyer, M., Ploegh, H. L., and Kasper, D. L. (2002) Zwitterionic polysaccharides stimulated T cells by MHC class II-dependent interactions. J. Immunol. 169, 6149-6153. crossref(new window)

Kanmani, P., Satish, K. R., Yuvaraj, N., Paari, K. A., Pattukumar, V., and Arul, V. (2013) Probiotics and its functionally valuable products-A review. Crit. Rev. Food Sci. Nutr. 53, 641-658. crossref(new window)

Khani, S., Hosseini, H. M., Taheri, M., Nourani, M. R., and Imani Fooladi, A. A. (2012) Probiotics as an alternative strategy for prevention and treatment of human diseases: A review. Inflamm. Allergy Drug Targets 11, 79-89. crossref(new window)

Kidd, P. (2003) Th1/Th2 balance: the hypothesis, its limitation, and implication ofr health and disease. Altern. Med. Rev. 8, 223-246.

Kim, J. H., Sung, N. Y., Byun, E. H., Kwon, S. K., Song, B. S., Choi, J. I., Yoon, Y., Kim, J. K., Byun, M. W., and Lee, J. W. (2009) Effect of γ-irradiation on immunological activities of β-glucan. Food Sci. Biotechnol. 18, 1305-1309.

Kimoto, H., Mizumachi, K., Okamoto, T., and Kurisaki, J. (2004) New Lactococcus strain with immunomodulatory activity: enhancement of Th1-type immune response. Microbiol. Immunol. 48, 75-82. crossref(new window)

Kitazawa, H., Harata, T., Uemura, J., Saito, T., Kaneko, T., and Itoh, T. (1998) Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii spp. bulgaricus. Int. J. Food Microbiol. 40, 169-175. crossref(new window)

Klaus, D. M. and Howard, H. N. (2006) Antibiotic efficacy and microbial virulence during space flight. Trends Biotechnol. 24, 131-136. crossref(new window)

Laman, J. D., Schonoveld, A. H., Moll, F. L. von Meurs, M., and Pasterkamp, G. (2002) Significance of peptidoglycan, a proinflammatory bacterial antigen in atherosclerotic arteriesand its association with vulnerable plaques. Am. J. Cardiol. 90, 119-132. crossref(new window)

Li, Y., Wu, Q., Deng, Y., Lv, H., Qiu, J., Chi, G., and Feng, H. (2015) D( )-Salicin inhibits the LPS-induced inflammation in RAW264.7 cells and mouse models. Int. Immunopharmacol. 26, 286-294. crossref(new window)

Logan, A. C., Rao, A. V., and Irani, D. (2003) Chronic fatigue syndrome: lactic acid bacteria may be of therapeutic value. Med. Hypotheses 60, 915-923. crossref(new window)

Masood, M. I., Qadir, M. I., Shirazi, J. H., and Khan, I. U. (2011) Beneficial effects of lactic acid bacteria on human beings. Crit. Rev. Microbiol. 37, 91-98. crossref(new window)

National Astronautics and Space Administration. Delivery of probiotics in the space food system (Probiotics_Food). Available from:http://Isda. Accessed Aug. 27, 2014.

Özdemir, Ö. (2010) Various effects of different probiotics strains in allergic disorders: an update from laboratory and clinical data. Clin. Exp. Immunol. 160, 295-304. crossref(new window)

Palomares, O. (2013) The role of regulatory T cells in IgE-mediated food allergy. J. Investig. Allergol. Clin. Immunol. 23, 371-382.

Pochard, P., Gosset, P., Grangette, C., Andre, C., Tonnel, A, Pestel, J., and Mercenier, A. (2002) Lactic acid bacteria inhibit TH2 cytokine production by mononuclear cells from allergic patients. J. Allergy Clin. Immunol. 110, 617-623. crossref(new window)

Räsänen, L. and Arvilommi, H. (1981) Cell walls, peptidoglycans, and teichoic acids of gram positive bacteria as polyclonal inducers and immunomodulators of proliferative and lymphokine responses of human B and T lymphocytes. Infect. Immun. 34, 712-717.

Rautava, S., Ruuskanen, O., Ouwehand, A., Salminen, S., and Isolauri. E. (2004) The hygienic hypothesis of atopic disease - An extended version. J. Pediatr. Gastroenterol. Nutr. 38, 378-388. crossref(new window)

Stingele, F., Corthesy, B., Kusy, N., Porcelli, S. A., Kasper, D. L., and Tzianabos, A. O. (2004) Zwitterionic polysaccharides stimulate T cells with no preferential V{beta} usage and promote anery, resulting in protection against experimental abscess formation. J. Immunol. 172, 1483-1490. crossref(new window)

van der Velden, V. H., Laan, M. P., Baert, M. R., de Waal Malefyt, R., Neijen, H. J., and Savelkoul, H. F. (2001) Selective development of a strong Th2 cytokine profile in high-risk children who develop a strong atopy: Risk factors and regulatory role of IFN-, IL-4, IL-10. Clin. Exp. Allergy 31, 997-1006. crossref(new window)