Advanced SearchSearch Tips
Characterization of Selected Lactobacillus Strains for Use as Probiotics
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Characterization of Selected Lactobacillus Strains for Use as Probiotics
Song, Minyu; Yun, Bohyun; Moon, Jae-Hak; Park, Dong-June; Lim, Kwangsei; Oh, Sejong;
  PDF(new window)
The aim of this study was to evaluate the functional properties of lactic acid bacteria from various sources and to identify strains for use as probiotics. Ten Lactobacillus strains were selected and their properties such as bile tolerance, acid resistance, cholesterol assimilation activity, and adherence to HT-29 cells were assessed to determine their potential as probiotics. Lactobacillus sp. JNU 8829, L. casei MB3, L. sakei MA9, L. sakei CH8, and L. acidophilus M23 were found to show full tolerance to the 0.3% bile acid. All strains without L. acidophilus M23 were the most acid-tolerant strains. After incubating the strains at pH 2.5 for 2 h, their viability decreased by 3 Log cells. Some strains survived at pH 2.5 in the presence of pepsin and 0.3% bile acid. Lactobacillus sp. JNU 8829, L. acidophilus KU41, L. acidophilus M23, L. fermentum NS2, L. plantarum M13, and L. plantarum NS3 were found to reduce cholesterol levels by >50% in vitro. In the adhesion assay, Lactobacillus sp. JNU 8829, L. casei MB3, L. sakei MA9, and L. sakei CH8 showed higher adhesion activities after 2 h of co-incubation with the intestinal cells. The results of this comprehensive analysis shows that this new probiotic strain named, Lactobacillus sp. JNU 8829 could be a promising candidate for dairy products.
Lactobacillus;probiotics;acid and bile acid tolerances;cholesterol;
 Cited by
Comparison of dairy desserts produced with a potentially probiotic mixed culture and dispersions obtained from Gracilaria birdiae and Gracilaria domingensis seaweeds used as thickening agents, Food Funct., 2017, 8, 9, 3075  crossref(new windwow)
The anti-allergic activity of Lactobacillus plantarum L67 and its application to yogurt, Journal of Dairy Science, 2016, 99, 12, 9372  crossref(new windwow)
Enhancement of Antioxidative and Intestinal Anti-inflammatory Activities of Glycated Milk Casein after Fermentation with Lactobacillus rhamnosus 4B15, Journal of Agricultural and Food Chemistry, 2017, 65, 23, 4744  crossref(new windwow)
The advancement of probiotics research and its application in fish farming industries, Research in Veterinary Science, 2017, 115, 66  crossref(new windwow)
Lactobacillus plantarum L67 glycoprotein protects against cadmium chloride toxicity in RAW 264.7 cells, Journal of Dairy Science, 2016, 99, 3, 1812  crossref(new windwow)
Lactobacillus sakei: A Starter for Sausage Fermentation, a Protective Culture for Meat Products, Microorganisms, 2017, 5, 3, 56  crossref(new windwow)
Dual function of Lactobacillus kefiri DH5 in preventing high-fat-diet-induced obesity: direct reduction of cholesterol and upregulation of PPAR-α in adipose tissue, Molecular Nutrition & Food Research, 2017, 1700252  crossref(new windwow)
Brashears, M. M., Gilliland, S. E., and Buck, L. M. (1998) Bile salt deconjugation and cholesterol removal from media by Lactobacillus casei. J. Dairy Sci. 81, 2103-2110. crossref(new window)

Buck, L. M. and Gilliland, S. E. (1994) Comparison of freshly isolated strains of Lactobacillus acidophilus of human intestinal origin for ability to assimilate cholesterol during growth. J. Dairy Sci. 77, 2925-2933. crossref(new window)

Charteris, W. P., Kelly, P. M., Morelli, L., and Collins, J. K. (1998) Antibiotic susceptibility of potentially probiotic Bifidobacterium isolates from the human gastrointestinal tract. Lett. Appl. Microbiol. 26, 333-337. crossref(new window)

Chou, L. S. and Weimer, B. (1999) Isolation and characterization of acid- and bile-tolerant isolates from strains of Lactobacillus acidophilus. J. Dairy Sci. 82, 23-31. crossref(new window)

du Toit, M., Franz, C. M., Dicks, L. M., Schillinger, U., Haberer, P., Warlies, B., Ahrensc, F., and Holzapfela, W. H. (1998) Characterisation and selection of probiotic lactobacilli for a preliminary minipig feeding trial and their effect on serum cholesterol levels, faeces pH and faeces moisture content. Int. J. Food Microbiol. 40, 93-104. crossref(new window)

Dunne, C., O’Mahony, L., Murphy, L., Thornton, G., Morrissey, D., O’Halloran, S., Feeney, M., Flynn, S., Fitzgerald, G.,Daly, C., Kiely, B., O’Sullivan, G. C., Shanahan, F., and Collins, J. K. (2001) In vitro selection criteria for probiotic bacteria of human origin: Correlation with in vivo findings. Am. J. Clin. Nutr. 73, 386S-392S. crossref(new window)

Hyronimus, B., Le Marrec, C., Sassi, A. H., and Deschamps, A. (2000) Acid and bile tolerance of spore-forming lactic acid bacteria. Int. J. Food Microbiol. 61, 193-197. crossref(new window)

Jacobsen, C. N., Roesnfeldt Nielsen, V., Hayford, A. E., Moller, P. L., Michaelsen, K. F., Paerregaard, A., Sandström, B., Tvede, M., and Jacobsen, M. (1999) Screening of probioticac tivities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl. Environ. Microbiol. 65, 4949-4956.

Kim, P. I., Jung, M. Y., Chang, Y. H., Kim, S., Kim, S. J., and Park, Y. H. (2007) Probiotic properties of Lactobacillus and Bifidobacterium strains isolated from porcine gastrointestinal tract. Appl. Microbiol. Biotechnol. 74, 1103-1111. crossref(new window)

Kim, S. J., Cho, S. Y., Kim, S. H., Song, O. J., Shin, I. S., Cha, D. S., and Park, H. J. (2008) Effect of microencapsulation on viability and other characteristics in Lactobacillus acidophilus ATCC 43121. LWT-Food Sci. Technol. 41, 493-500. crossref(new window)

Kumar, R., Grover, S., and Batish, V. K. (2012) Bile salt hydrolase activity screening of lactobacilli in vitro selection of indigenous Lactobacillus strains with potential bile salt hydrolysing and cholesterol-lowering ability. Probiotics Antimicro.Prot. 4, 162-172. crossref(new window)

Lehto, E. M. and Salminen, S. J. (1997) Inhibition of Salmonella typhimurium adhesion to Caco-2 cell cultures by Lactobacillus strain GG spent culture supernate: Only a pH effect? FEMS Immunol. Med. Microbiol. 18, 125-132. crossref(new window)

Lim, S. M. (2014) Antimutagenicity activity of the putative probiotic strain Lactobacillus paracasei subsp. tolerans JG22 isolated from pepper leaves Jangajji. Food Sci. Biotechnol. 23, 141-150. crossref(new window)

Liong, M. T. and Shah, N. P. (2005) Acid and bile tolerance and cholesterol removal ability of lactobacilli strains. J. Dairy Sci. 88, 55-66. crossref(new window)

Maragkoudakis, P. A., Zoumpopoulou, G., Miaris, C., Kalantzopoulos, G., Pot, B., and Tsakalidou, E. (2006) Probiotic potential of Lactobacillus strains isolated from dairy products. Int. Dairy J. 16, 189-199. crossref(new window)

Merrell, D. S. and Camilli, A. (2002) Acid tolerance of gastrointestinal pathogens. Curr. Opin. Microbiol. 5, 51-55. crossref(new window)

Miyoshi, Y., Okada, S., Uchimura, T., and Satoh, E. (2006) A mucus adhesion promoting protein, MapA, mediates the adhesion of Lactobacillus reuteri to Caco-2 human intestinal epithelial cells. Biosci. Biotechnol. Biochem. 70, 1622-1628. crossref(new window)

Nguyen, T. D. T., Kang, J. H., and Lee, M. S. (2007) Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects. Int. J. Food Microbiol. 113, 358-361. crossref(new window)

Nilakhe, S. and Sapre, V. (2015) Cholesterol assimilation by intestinal Lactobacilus acidophilus. Res. J. Chem. Environ. 19, 10-14.

Noh, D. O., Kim, S. H., and Gilliland, S. E. (1997) Incorporation of cholesterol into the celluar membrane of Lactobacillus acidophilus ATCC 43121. J. Dairy Sci. 80, 3107-3113. crossref(new window)

Ouwehand, A. C., Kirjavainen, P. V., Shortt, C., and Salminen, S. (1999) Probiotics: Mechanisms and established effects. Int. Dairy J. 9, 43-52. crossref(new window)

Pereira, D. I. and Gibson, G. R. (2002) Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Appl. Environ. Microbiol. 68, 4689-4693. crossref(new window)

Rudel, L. L. and Morris, M. D. (1973) Determination of cholesterol using o-phthalaldehyde. J. Lipid Res. 14, 364-366

Servin, A. L. and Coconnier, M. H. (2003) Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract. Res. Clin. Gastroenterol. 17, 741-754. crossref(new window)

Usman, and Hosono, A. (1999) Bile tolerance, taurocholate deconjugation, and binding of cholesterol by Lactobacillus gasseri strains. J. Dairy Sci. 82, 243-248. crossref(new window)

Wang, J., Zhang, H., Chen, X., Chen, Y., Menghebilige, and Bao, Q. (2012) Selection of potential probiotic lactobacilli for cholesterol-lowering properties and their effect on cholesterol metabolism in rats fed a high-lipid diet. J. Dairy Sci. 95, 1645-1654. crossref(new window)