Advanced SearchSearch Tips
Evaluation of Meat Color and Physiochemical Characteristics in Forequarter Muscles of Holstein Steers
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Evaluation of Meat Color and Physiochemical Characteristics in Forequarter Muscles of Holstein Steers
Moon, Sung Sil; Seong, Pil-Nam; Jeong, Jin Young;
  PDF(new window)
The beef forequarter muscle comprises approximately 52% of carcass weight. The objective of this study was to evaluate the physiochemical characteristics and meat color from forequarter muscle of Holstein steers. Fifteen forequarter muscles were trimmed of external connective tissue and fat. An experimental group of eight Holstein steers was assessed using meat color, water-holding capacity, drip loss, and Warner-Bratzler shear force value at the same quality grade. The M. omotransversarius (0.45 kg) had the highest (p<0.05) lightness (L*) value, whereas the M. teres major (0.4 kg) and M. triceps brachii (caput laterale) (0.52 kg) had the lowest (p<0.05) values. The M. semispanitus capitus (1.48 kg), which is a neck muscle, had the highest values for both redness (a*) and yellowness (b*), whereas the lowest (p<0.05) values were for the M. teres major. The M. omotransversarius, M. latissimus dorsi (1.68 kg), and M. rhomboideus (1.2 kg) were ranked high (p<0.05) in water-holding capacity. The drip loss value was the highest for the M. longissimus dorsi thoracis (p<0.05; 1.86 kg), while the M. infraspinatus (2.28 kg), M. supraspinatus (1.38 kg), M. brachiocephalicus (1.01 kg), and M. pectoralis superficialis (1.18 kg) had the lowest (p<0.05). The Warner-Bratzler shear force value indicated that the M. pectoralis profundus (3.39 kg), M. omotransversarius, and M. brachiocephalicus were the toughest (p<0.05), whereas the M. subscapularis (0.86 kg), M. longissimus dorsi thoracis, M. teres major, and M. infraspinatus were the most tender cuts (p<0.05). Here, muscle type explained most of the variability in the forequarter physiochemical characteristics. Thus, our findings suggest that these muscle profile data will allow for more informed decisions when selecting individual muscles to produce value-added products from Holstein steers.
color;drip loss;forequarter muscle;shear force;water-holding capacity;
 Cited by
Albrecht, E., Teuscher, F., Ender, K., and Wegner, J. (2006) Growth- and breed-related changes of marbling characteristics in cattle. J. Anim. Sci. 84, 1067-1075. crossref(new window)

Arroyo, C., Eslami, S., Brunton, N. P., Arimi, J. M., Noci, F., and Lyng, J. G. (2015) An assessment of the impact of pulsed electric fields processing factors on oxidation, color, texture, and sensory attributes of turkey breast meat. Poult. Sci. 94, 1088-1095. crossref(new window)

Bracho, G. E. and Haard, N. F. (1990) Determination of collagen cross-links in rockfish skeletal muscle. J. Food Biochem. 14, 435-451. crossref(new window)

Carmack, C. F., Kastner, C. L., Dikeman, M. E., Schwenke, J. R., and García Zepeda, C. M. (1995) Sensory evaluation of beef-flavor-intensity, tenderness, and juiciness among major muscles. Meat Sci. 39, 143-147. crossref(new window)

Chávez, A., Pérez, E., Rubio, M. S., Méndez, R. D., Delgado, E. J., and Díaz, D. (2012) Chemical composition and cooking properties of beef forequarter muscles of Mexican cattle from different genotypes. Meat Sci. 91, 160-164. crossref(new window)

Chriki, S., Gardner, G. E., Jurie, C., Picard, B., Micol, D., Brun, J. P., Journaux, L., and Hocquette, J. F. (2012) Cluster analysis application identifies muscle characteristics of importance for beef tenderness. BMC Biochem. 13, 29. crossref(new window)

Doucet, E., Tremblay, A., Simoneau, J. A., and Joanisse, D. R. (2003) Skeletal muscle enzymes as predictors of 24-h energy metabolism in reduced-obese persons. Am. J. Clin. Nutr. 78, 430-435. crossref(new window)

Dugan, M. E. R., Thacker, R. D., Aalhus, J. L., Jeremiah, L. E., and Lien, K. A. (2000) Analysis of 4-hydroxyproline using 4-chloro-7-nitrobenzo-2-oxa-13-diazol dirivatization and micellar electrokinetic chromatography combined with laser induced fluorescence detection. J. Chromatogr. B, 744, 195-199. crossref(new window)

Faustman, C. and Cassens, R. G. (1990) The biochemical basis for discoloration in fresh meat: A review. J. Muscle Foods 1, 217-243. crossref(new window)

Hamm, R. (1960) Biochemistry of meat hydration. In: C. O. Chichester, E. M. Mrak and G. F. Stewart, Editors, Advances in food research Vol. 10, Academic Press, Inc., Orlando, FL.

Han, S. W. and Lee, B. O. (2010) A study on the purchasing behaviors of consumers for domestic and imported beef in Korean. J. Agric. Life Sci. 22, 73-89.

Hill, F. (1966) The solubility of intramuscular collagen in meat animals of various ages. J. Food Sci. 31, 161-166. crossref(new window)

Honikel, K. O. (1998) Reference methods for the assessment of physical characteristics of meat. Meat Sci. 49, 447-457. crossref(new window)

Honikel, K. O. and Hamm, R. (1994) Measurement of water-holding capacity and juiciness. Adv. Meat Res. 9, 125-161.

Huff-Lonergan, E. and Lonergan, S. M. (2005) Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci. 71, 194-204. crossref(new window)

Jeremiah, L. E., Gibson, L. L., Aalhus, J. L., and Dugan, M. E. (2003a) Assessment of palatability attributes of the major beef muscles and muscle groups. Meat Sci. 65, 949-958. crossref(new window)

Jeremiah, L. E., Dugan, M. E., Aalhus, J. L., and Gibson, L. L. (2003b) Assessment of the chemical and cooking properties of the major beef muscles and muscle groups. Meat Sci. 65, 985-992. crossref(new window)

Jeremiah, L. E., Dugan, M. E., Aalhus, J. L., and Gibson, L. L. (2003c) Assessment of the relationship between chemical components and palatability of major beef muscles and muscle groups. Meat Sci. 65, 1013-1019. crossref(new window)

Johnson, R. C., Chen, C. M., Muller, T. S., Costello, W. J., Romans, J. R., and Jones, K. W. (1988) Characterization of the muscles within the beef forequarter. J. Food Sci. 53, 1247-1250. crossref(new window)

Kim, B. C., Lee, S., Koh, K. C., and Joo, S. T. (1993) The effects of breed and boning method on the palatability and quality traits of beef. Korean J. Anim. Sci. 35, 427-433.

Lianji, M. and Chen, N. (1989) Research in improving the water holding capacity of meat in sausage products. 35th Inter. Cong. Meat Sci. Technol. Copenhagen, Denmark, pp. 781-786.

Maltin, C., Balcerzak, D., Tilley, R., and Delday, M. (2003) Determinants of meat quality: tenderness. Proc. Nutr. Soc. 62, 337-347. crossref(new window)

McKenna, D. R., Mies, P. D., Baird, B. E., Pfeiffer, K. D., Ellebracht, J. W., and Savell, J. W. (2005) Biochemical and physical factors affecting discoloration characteristics of 19 bovine muscles. Meat Sci. 70, 665-682. crossref(new window)

McKenna, D. R., Roebert, D. L., Bates, P. K., Schmidt, T. B., Hale, D. S., Griffin, D. B., Savell, J. W., Brooks, J. C., Morgan, J. B., Montgomery, T. H., Belk, K. E., and Smith, G. C. (2002) National Beef Quality Audit-2000: survey of targeted cattle and carcass characteristics related to quality, quantity, and value of fed steers and heifers. J. Anim. Sci. 80, 1212-1222. crossref(new window)

O'Keeffe, M. and Hood, D. E. (1982) Biochemical factors influencing metmyoglobin formation on beef from muscles of differing colour stability. Meat Sci. 7, 209-228. crossref(new window)

Park, B. Y., Seong, P. N., Ba, H. V., Park, K. M., Cho, Moon, S. S., and Kang, G. H. (2015) Tenderization potential of Hanwoo beef muscles from carcasses with differed genders and loin intramuscular fat content levels during post mortem ageing. Anim. Sci. J. 86, 646-654. crossref(new window)

Seong, P. N., Park, K. M., Kang, S. M., Kang, G. H., Cho, S. H., Park, B. Y., and Van Ba, H. (2014) Effect of particular breed on the chemical composition, texture, color, and sensorial characteristics of dry-cured ham. Asian-Aust. J. Anim. Sci. 27, 1164-1173. crossref(new window)

Shackelford, S. D., Koohmaraie, M., Whipple, G., Wheeler, T. L., Miller, M. F., Crouse, J. D., and Reagan, J. O. (1991) Predictors of beef tenderness: Development and verification. J. Food Sci. 56, 1130-1135. crossref(new window)

Siemens, M. G. (2012) Managing Holstein steers for beef production. US department of agriculture, University of Wisconsin. A3659.

Tornberg, E. (2005) Effects of heat on meat proteins - Implications on structure and quality of meat products. Meat Sci. 70, 493-508. crossref(new window)

Von Seggern, D. D., Calkins, C. R., Johnson, D. D., Brickler, J. E., and Gwartney, B. L. (2005) Muscle profiling: Characterizing the muscles of the beef chuck and round. Meat Sci. 71, 39-51. crossref(new window)

Walsh, H., Martins, S., O'Neill, E. E., Kerry, J. P., Kenny, T., and Ward, P. (2010) The effects of different cooking regimes on the cook yield and tenderness of non-injected and injection enhanced forequarter beef muscles. Meat Sci. 84, 444-448. crossref(new window)

Xu, Y., Huang, J. C., Huang, M., Xu, B. C., and Zhou, G. H. (2012) The effects of different chilling methods on meat quality and calpain activity of pork muscle longissimus dorsi. J. Food Sci. 77, C27-C32. crossref(new window)