Advanced SearchSearch Tips
Quantitative Proteogenomics and the Reconstruction of the Metabolic Pathway in Lactobacillus mucosae LM1
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Quantitative Proteogenomics and the Reconstruction of the Metabolic Pathway in Lactobacillus mucosae LM1
Pajarillo, Edward Alain B.; Kim, Sang Hoon; Lee, Ji-Yoon; Valeriano, Valerie Diane V.; Kang, Dae-Kyung;
  PDF(new window)
Lactobacillus mucosae is a natural resident of the gastrointestinal tract of humans and animals and a potential probiotic bacterium. To understand the global protein expression profile and metabolic features of L. mucosae LM1 in the early stationary phase, the QExactiveTM Hybrid Quadrupole-Orbitrap Mass Spectrometer was used. Characterization of the intracellular proteome identified 842 proteins, accounting for approximately 35% of the 2,404 protein-coding sequences in the complete genome of L. mucosae LM1. Proteome quantification using QExactiveTM Orbitrap MS detected 19 highly abundant proteins (> 1.0% of the intracellular proteome), including CysK (cysteine synthase, 5.41%) and EF-Tu (elongation factor Tu, 4.91%), which are involved in cell survival against environmental stresses. Metabolic pathway annotation of LM1 proteome using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database showed that half of the proteins expressed are important for basic metabolic and biosynthetic processes, and the other half might be structurally important or involved in basic cellular processes. In addition, glycogen biosynthesis was activated in the early stationary phase, which is important for energy storage and maintenance. The proteogenomic data presented in this study provide a suitable reference to understand the protein expression pattern of lactobacilli in standard conditions
Lactobacillus mucosae;QExactiveTM Orbitrap;mass spectrometry;proteome;metabolic pathway;
 Cited by
Coupling of gel-based 2-DE and 1-DE shotgun proteomics approaches to dig deep into the leaf senescence proteome of Glycine max, Journal of Proteomics, 2016, 148, 65  crossref(new windwow)
Al-Naseri, A., Bowman, J. P., Wilson, R., Nilsson, R. E., and Britz, M. L. (2013) Impact of lactose starvation on the physiology of Lactobacillus casei GCRL163 in the presence or absence of tween 80. J. Proteome Res. 12, 5313-5322. crossref(new window)

Bleckwedel, J., Terán, L. C., Bonacina, J., Saavedra, L., Mozzi, F., and Raya, R. R. (2014) Draft genome sequence of the mannitol-producing strain Lactobacillus mucosae CRL573. Genome Announc. 2, e01292-14.

Cohen, D. P. A., Renes, J., Bouwman, F. G., Zoetendal, E. G., Mariman, E., de Vos, W. M., and Vaughan, E. E. (2006) Proteomic analysis of log to stationary growth phase Lactobacillus plantarum cells and a 2-DE database. Proteomics 6, 6485-6493. crossref(new window)

Danielsen, M., Hornshøj, H., Siggers, R. H., Jensen, B. B., van Kessel, A. G., and Bendixen, E. (2007) Effects of bacterial colonization on the porcine intestinal proteome. J. Proteome Res. 6, 2596-2604. crossref(new window)

Dudley, E. G. and Steele, J. L. (2005) Succinate production and citrate catabolism by Cheddar cheese nonstarter lactobacilli. J. Appl. Microbiol. 98, 14-23. crossref(new window)

Goh, Y. J. and Klaenhammer, T. R. (2014) Insights into glycogen metabolism in Lactobacillus acidophilus: Impact on carbohydrate metabolism, stress tolerance and gut retention. Microb. Cell Fact. 13, 94. crossref(new window)

Heunis, T., Deane, S., Smit, S., and Dicks, L. M. T. (2014) Proteomic profiling of the acid stress response in Lactobacil lusplantarum 423. J. Proteome Res. 13, 4028-4039. crossref(new window)

Hussain, M. A., Knight, M. I., and Britz, M. L. (2009) Proteomic analysis of lactose-starved Lactobacillus casei during stationary growth phase. J. Appl. Microbiol. 106, 764-773. crossref(new window)

Jan, G., Leverrier, P., Pichereau, V., and Boyaval, P. (2001) Changes in protein synthesis and morphology during acid adaptation of Propionibacterium freudenreichii. Appl. Environ.Microbiol. 67, 2029-2036. crossref(new window)

Johansson, M. E. V., Gustafsson, J. K., Holmén-Larsson, J., Jabbar, K. S., Xia, L., Xu, H., Ghishan, F. K., Carvalho, F. A., Gewirtz, A. T., Sjövall, H., and Hansson, G. C. (2014) Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut 63, 281-291.

Johansson, M. E. V., Larsson, J. M. H., and Hansson, G. C. (2011) The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of hostmicrobial interactions. Proc. Natl. Acad. Sci. USA 108, 4659-4665. crossref(new window)

Kang, T. S., Korber, D. R., and Tanaka, T. (2013) Contributions of citrate in redox potential maintenance and ATP production: metabolic pathways and their regulation in Lactobacillus panis PM1. Appl. Microbiol. Biotechnol. 97, 8693-8703. crossref(new window)

Kant, R., Blom, J., Palva, A., Siezen, R. J., and de Vos, W. M. (2010) Comparative genomics of Lactobacillus. Microb. Biotechnol. 4, 323-332.

Koistinen, K. M., Plumed-Ferrer, C., Lehesranta, S. J., Kärenlampi, S. O., and von Wright, A. (2007) Comparison of growth-phase-dependent cytosolic proteomes of two Lactobacillus plantarum strains used in food and feed fermentations. FEMS Microbiol. Lett. 273, 12-21. crossref(new window)

Krauss, M., Singer, H., and Hollender, J. (2010) LC-high resolution MS in environmental analysis: from target screening to the identification of unknowns. Anal. Bioanal. Chem. 397, 943-951. crossref(new window)

Kucharova, V., and Wiker, H. G. (2014) Proteogenomics in microbiology: Taking the right turn at the junction of genomics and proteomics. Proteomics 14, 2360-2675. crossref(new window)

Le Maréchal, C., Peton, V., Plé, C., Vroland, C., Jardin, J., Briard-Bion, V., Durant, G., Chuat, V., Loux, V., Foligne, B., Deutsch, S. M., Falentin, H., and Jan, G. (2015) Surface proteins of Propionibacterium freudenreichii are involved in its anti-inflammatory properties. J. Proteomics 113, 447-461. crossref(new window)

Lee, B., Tachon, S., Eigenheer, R. A., Phinney, B. S., and Marco, M. L. (2015) Lactobacillus casei low-temperature,dairy-associated proteome promotes persistence in the mammalian digestive tract. J. Proteome Res. 14, 3136-3147. crossref(new window)

Lee, J. H., Valeriano, V. D., Shin, Y. R., Chae, J. P., Kim, G. B., Ham, J. S., Chun, J., and Kang, D. K. (2012) Genome sequence of Lactobacillus mucosae LM1, isolated from piglet feces. J. Bacteriol. 194, 4766-4766. crossref(new window)

Lee, J. Y., Pajarillo, E. A. B., Kim, M. J., Chae, J. P., and Kang, D. K. (2013) Proteomic and transcriptional analysis of Lactobacillus johnsonii PF01 during bile salt exposure by iTRAQ shotgun proteomics and quantitative RT-PCR. J. Proteome Res. 12, 432-443. crossref(new window)

Lithgow, J. K., Hayhurst, E. J., Cohen, G., Aharonowitz, Y., and Foster, S. J. (2004) Role of a cysteine synthase in Staphylococcus aureus. J. Bacteriol. 186, 1579-1590. crossref(new window)

London, L. E. E., Price, N. P. J., Ryan, P., Wang, L., Auty, M. A. E., Fitzgerald, G. F., Stanton, C., and Ross, R. P. (2014) Characterization of a bovine isolate Lactobacillus mucosae DPC 6426 which produces an exopolysaccharide composed predominantly of mannose residues. J. Appl. Microbiol. 117, 509-517. crossref(new window)

Marcobal, A., Southwick, A. M., Earle, K. A., and Sonnenburg, J. L. (2013) A refined palate: Bacterial consumption of host glycans in the gut. Glycobiology 23, 1038-1046. crossref(new window)

McGuckin, M. A., Lindén, S. K., Sutton, P., and Florin, T. H. (2011) Mucin dynamics and enteric pathogens. Nat. Rev. Microbiol. 9, 265-278. crossref(new window)

Nilsson, J. and Nissen, P. (2005) Elongation factors on the ribosome. Curr. Opin. Struct. Biol. 15, 349-354. crossref(new window)

Nishiyama, K., Ochiai, A., Tsubokawa, D., Ishihara, K., Yamamoto, Y., and Mukai, T. (2013) Identification and characterization of sulfated carbohydrate-binding protein from Lactobacillus reuteri. PLoS One 8, e83703. crossref(new window)

Preiss, J. (1984) Bacterial glycogen synthesis and its regulation. Annu. Rev. Microbiol. 38, 419-458. crossref(new window)

Roos, S., Karner, F., Axelsson, L., and Jonsson, H. (2000) Lactobacillus mucosae sp. nov., a new species with in vitro mucus-binding activity isolated from pig intestine. Int. J. Sys. Evol. Microbiol. 50, 251-258. crossref(new window)

Torino, M. I., Taranto, M. P., and Font de Valdez, G. (2005) Citrate catabolism and production of acetate and succinate by Lactobacillus helveticus ATCC 15807. Appl. Microbiol. Biotechnol. 69, 79-85. crossref(new window)

Valeriano, V. D., Balolong, M. P., and Kang, D. K. (2014) In vitro evaluation of the mucin-adhesion ability and probiotic potential of Lactobacillus mucosae LM1. J. Appl. Microbiol. 117, 485-497. crossref(new window)

Watanabe, M., Kinoshita, H., Nitta, M., Yukishita, R., Kawai, Y., Kimura, K., Taketomo, N., Yamazaki, Y., Tateno, Y., Miura, K., Horii, A., Kitazawa, H., and Saito, T. (2010) Identification of a new adhesin-like protein from Lactobacillus mucosae ME-340 with specific affinity to the human blood group A and B antigens. J. Appl. Microbiol. 109, 927-935. crossref(new window)

Wioeniewski, J. R., Zougman, A., Nagaraj, N., and Mann, M. (2009) Universal sample preparation method for proteome analysis. Nat. Methods 6, 359-362. crossref(new window)

Wu, C., Zhang, J., Chen, W., Wang, M., Du, G., and Chen, J. (2011) A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance. Appl. Microbiol. Biotechnol. 93, 707-722.

Zhu, L., Hu, W., Liu, D., Tian, W., Yu, G., Liu, X., Wang, J., Feng, E., Zhang, X., Chen, B., Zeng, M., and Wang, H. (2011) A reference proteomic database of Lactobacillus plantarum CMCC-P0002. PLoS One 6, e25596. crossref(new window)