Advanced SearchSearch Tips
Identification of Antihypertensive Peptides Derived from Low Molecular Weight Casein Hydrolysates Generated during Fermentation by Bifidobacterium longum KACC 91563
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Identification of Antihypertensive Peptides Derived from Low Molecular Weight Casein Hydrolysates Generated during Fermentation by Bifidobacterium longum KACC 91563
Ha, Go Eun; Chang, Oun Ki; Jo, Su-Mi; Han, Gi-Sung; Park, Beom-Young; Ham, Jun-Sang; Jeong, Seok-Geun;
  PDF(new window)
Angiotensin-converting enzyme (ACE) inhibitory activity was evaluated for the low-molecular-weight fraction (<3 kDa) obtained from milk fermentation by Bifidobacterium longum KACC91563. The ACE inhibitory activity in this fraction was 62.3%. The peptides generated from the <3 kDa fraction were identified by liquid chromatography-electrospray ionization quantitative time-of-flight mass spectrometry analysis. Of the 28 peptides identified, 11 and 16 were identified as β-casein (CN) and αs1-CN, respectively. One peptide was identified as κ-CN. Three peptides, YQEPVLGPVRGPFPIIV, QEPVLGPVRGPFPIIV, and GPVRGPFPIIV, from β-CN corresponded to known antihypertensive peptides. We also found 15 peptides that were identified as potential antihypertensive peptides because they included a known antihypertensive peptide fragment. These peptides were as follows: RELEELNVPGEIVE (f1-14), YQEPVLGPVRGPFP (f193-206), EPVLGPVRGPFPIIV (f195-206), PVLGPVRGPFPIIV (f196-206), VLGPVRGPFPIIV (f197-206), and LGPVRGPFPIIV (f198-206) for β-CN; and APSFSDIPNPIGSENSEKTTMPLW (f176-199), SFSDIPNPIGSENSEKT- TMPLW (f178-199), FSDIPNPIGSENSEKTTMPLW (f179-199), SDIPNPIGSENSEKTTMPLW (f180-199), DIPNPIGSENSEKTTMPLW (f181-199), IPNPIGSENSEKTTMPLW (f182-199), PIGSENSEKTTMPLW (f185-199), IGSENSEKTTMPLW (f186-199), and SENSEKTTMPLW (f188-199) for αs1-CN. From these results, B. longum could be used as a starter culture in combination with other lactic acid bacteria in the dairy industry, and/or these peptides could be used in functional food manufacturing as additives for the development of a product with beneficial effects for human health.
B. longum;antihypertensive peptide;angiotensin converting enzyme;
 Cited by
비피도박테리움 롱검의 기능성과 치즈 제조에 활용,김현욱;정석근;함준상;

한국유가공학회지, 2016. vol.34. 2, pp.75-82
κ-Casein as a source of short-chain bioactive peptides generated by Lactobacillus helveticus, Journal of Food Science and Technology, 2017  crossref(new windwow)
ACE-inhibitory peptides from bovine caseins released with peptidases from Maclura pomifera latex, Food Research International, 2017, 93, 8  crossref(new windwow)
Identification and Characterization of a Novel Antioxidant Peptide from Bovine Skim Milk Fermented by Lactococcus lactis SL6, Korean Journal for Food Science of Animal Resources, 2017, 37, 3, 402  crossref(new windwow)
Current Trends and Perspectives of Bioactive Peptides, Critical Reviews in Food Science and Nutrition, 2017, 00  crossref(new windwow)
Arunachalam, K. D. (1999) Role of bifidobacteria in nutrition, medicine and technology. Nutr. Res. 19, 1559-1597. crossref(new window)

Chang, O. K., Roux, E., Awussi, A. A., Miclo, L., Jardin, J., Jameh, N., Dary, A., Humbert, G., and Perrin, C. (2014) Use of a free form of the Streptococcus thermophilus cell envelope protease PrtS as a tool to produce bioactive peptides. Int. Dairy J. 38, 104-115. crossref(new window)

Chang, O. K., Seol, K. H., Jeong, S. G., Oh, M. H., Park, B. Y., Perrin, C., and Ham, J. S. (2013) Casein hydrolysis by Bifidobacterium longum KACC91563 and antioxidant activities of peptides derived therefrom. J. Dairy Sci. 96, 5544-5555. crossref(new window)

Collins, M. D. and Gibson, G. R. (1999) Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am. J. Clin. Nutr. 69, 1052S-1057S.

Cushman, D. W. and Cheung, H. S. (1971) Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 20, 1637-1648. crossref(new window)

Davidson, R. H., Duncan, S. E., Hackney, C. R., Eigel, W. N., and Boling, J. W. (2000) Probiotic culture survival and implications in fermented frozen yogurt characteristics. J. Dairy Sci. 83, 666-673. crossref(new window)

Del Mar Contreras, M., Carron, R., Montero, M., and Recio, I. (2009) Novel casein-derived peptide with anti-hypertensive activity. Int. Dairy J. 19, 566-573. crossref(new window)

Donkor, O. N., Henriksson, A., Singh, T. K., Vasiljevic, T., and Shah, N. P. (2007) ACE-inhibitory activity of probiotic yoghurt. Int. Dairy J. 17, 1321-1331. crossref(new window)

Genay, M., Sadat, L., Gagnaire, V., and Lortal, S. (2009) prtH2, not prtH, is the ubiquitous cell wall proteinase gene in Lactobacillus helveticus. Appl. Environ. Microbiol. 75, 3238-3249. crossref(new window)

Gilbert, C., Atlan, D., Blanc, B., Portalier, R., Germond, G. J., Lapierre, L., and Mollet, B. (1996) A new cell surface proteinase: Sequencing and analysis of the prtB gene from Lactobacillus delbrueckii subsp. bulgaricus. J. Bacteriol. 178, 3059-3065.

Gobbetti, M., Ferranti, P., Smacchi, E., Goffredi, F., and Addeo, F. (2000) Production of angiotensin-I-converting-enzyme-inhibitory peptides in fermented milks started by Lactobacillus delbrueckii subsp.bulgaricus SS1 and Lactococcuslactis subsp. cremoris FT4. Appl. Environ. Microbiol. 66, 3898-3904. crossref(new window)

Gobbetti, M., Stepaniak, L., De Angelis, M., Corsetti, A., and Di Cagno, R. (2002) Latent bioactive peptides in milk proteins: proteolytic activation and significance in dairy processing. Crit. Rev. Food Sci. Nutr. 42, 223-239. crossref(new window)

Gomez-Ruiz, J. A., Ramos, M., and Recio, I. (2002) Angiotensin-converting enzyme-inhibitory peptides in Manchego cheeses manufactured with different starter cultures. Int. Dairy J. 12, 697-706. crossref(new window)

Gonzalez-Gonzalez, C., Gibson, R., and Jauregi, P. (2013) Novel probiotic-fermented milk with angiotensin I-converting enzyme inhibitory peptides produced by Bifidobacterium bifidum MF 20/5. Int. J. Food Microbiol. 167, 131-137. crossref(new window)

Ham, J. S., Lee, T., Byun, M. J., Lee, K. T., Kim, M. K., Han, G. S., Jeong, S. G., Oh, M. H., Kim, D. H., and Kim, H. (2011) Complete genome sequence of Bifidobacterium longum subsp. longum KACC 91563. J. Bacteriol. 193, 5044. crossref(new window)

Hayes, M., Stanton, C., Slattery, H., O'Sullivan, O., Hill, C., Fitzgerald, G. F., and Ross, R. P. (2007a) Casein fermentate of Lactobacillus animalis DPC6134 contains a range of novel propeptide angiotensin-converting enzyme inhibitors. Appl. Environ. Microbiol. 73, 4658-4667. crossref(new window)

Hayes, M., Ross, R. P., Fitzgerald, G. F., and Stanton, C. (2007b) Putting microbes to work: Dairy fermentation, cell factories and bioactive peptides. Part II: Bioactive peptide functions. Biotechnol. J. 2, 435-449. crossref(new window)

Hebert, E. M., Mamone, G., Picariello, G., Raya, R. R., De Giori, G. S., Ferranti, P., and Addeo, F. (2008) Characterization of the pattern of as1- and b-casein breakdown and release of a bioactive peptide by a cell envelope proteinase from Lactobacillus delbrueckii subsp. lactis CRL 581. Appl. Environ. Microbiol. 74, 3682-3689. crossref(new window)

Hernandez-Ledesma, B., Amigo, L., Ramos, M., and Recio, I. (2004) Application of high-performance liquid chromatography-tandem mass spectrometry to the identification of biologically active peptides produced by milk fermentation and simulated gastrointestinal digestion. J. Chromatogr. A. 1049, 107-114.

Islam, M. A., Alam, M. K., Islam, M. N., Khan, M. A. S., Ekeberg, D., Rukke, E. O., and Vegarud, G. E. (2014) Principal milk components in buffalo, holstein cross, indigenous cattle and red chittagong cattle from bangladesh. Asian-Aust. J. Anim. Sci. 27, 886-897. crossref(new window)

Janer, C., Arigoni, F., Lee, B. H., Pelaez, C., and Requena, T. (2005) Enzymatic ability of Bifidobacterium animalis ssp. lactis to hydrolyze milk proteins: Identification and characterization of endopeptidase O. Appl. Environ. Microbiol. 71, 8460-8465. crossref(new window)

Jao, C. L., Huang, S. L., and Hsu, K. C. (2012) Angiotensin I-converting enzyme inhibitory peptides: Inhibition mode, bioavailability, and antihypertensive effects. Biomedicine 2, 130-136. crossref(new window)

Kaspari, A., Diefenthal, T., Grosche, G., Schierhorn, A., and Demuth, H. U. (1996) Substrates containing phosphorylated residues adjacent to proline decrease the cleavage by proline-specific peptidases. Biochim. Biophys. Acta 1293, 147-153. crossref(new window)

Korhonen, H. (2009) Milk-derived bioactive peptides: From science to applications. J. Funct. Foods 1, 177-187. crossref(new window)

Leahy, S. C., Higgins, D. G., Fitzgerald, G. F., and van Sinderen, D. (2005) Getting better with bifidobacteria. J. Appl. Microbiol. 98, 1303-1315. crossref(new window)

Maeno, M., Yamamoto, N., and Takano, T. (1996) Identification of an antihypertensive peptide from casein hydrolysate produced by a proteinase from Lactobacillus helveticus CP 790. J. Dairy Sci. 79, 1316-1321. crossref(new window)

Martín-Diana, A. B., Janer, C., Peláez, C., and Requena, T. (2003) Development of a fermented goat’s milk containing probiotic bacteria. Int. Dairy J. 13, 827-833. crossref(new window)

Maruyama, S. and Suzuki, H. (1982) A peptide inhibitor of angiotensin I-converting enzyme in the tryptic hydrolysate of casein. Agric. Biol. Chem. 46, 1393-1394. crossref(new window)

McBrearty, S., Ross, R. P., Fitzgerald, G. F., Collins, J. K., Wallace, J. M., and Stanton, C. (2001) Influence of two commercially available bifidobacteria cultures on cheddar cheese quality. Int. Dairy J. 11, 599-610. crossref(new window)

Miclo, L., Roux, E., Genay, M., Brusseaux, E., Poirson, C., Jameh, N., Perrin, C., and Dary, A. (2012) Variability of hydrolysis of β-, αs1-, and αs2-caseins by 10 strains of Streptococcus thermophilus and resulting bioactive peptides. J. Agric. Food Chem. 60, 554-565. crossref(new window)

Miguel, M., Contreras, M. M., Recio, I., and Aleixandre, A. (2009) ACE-inhibitory and antihypertensive properties of a bovine casein hydrolysate. Food Chem. 112, 211-214. crossref(new window)

Pastar, I., Tonic, I., Golic, N., Kojic, M., van Kranenburg, R., Kleerebezem, M. and Topisirovic, L., and Jovanovic, G. (2003) Identification and genetic characterization of a novel proteinase, PrtR, from the human isolate Lactobacillus rhamnosus BGT10. Appl. Environ. Microbiol. 69, 5802-5811. crossref(new window)

Petrillo, E. W. and Ondetti, M. A. (1982) Angiotensin-converting enzyme inhibitors: Medicinal chemistry and biological actions. Med. Res. Rev. 2, 1-41. crossref(new window)

Pihlanto-Leppälä, A., Rokka, T., and Korhonen, H. (1998) Angiotensin I converting enzyme inhibitory peptides derived from bovine milk proteins. Int. Dairy J. 8, 325-331. crossref(new window)

Reid, J. R., Ng, K. H., Moore, C. H., Coolbearm, T., and Pritchard, G. G. (1991) Comparison of bovine β-casein hydrolysis by PI and PIII type proteinases from Lactobacillus lactis subsp. cremoris. Appl. Microbiol. Biotechnol. 36, 344-351.

Rokka, T., Syväoja, E. L., Tuominen, J., and Korhonen, H. (1997) Release of bioactive peptides by enzymatic proteolysis of Lactobacillus GG fermented UHT milk. Milchwissenschaft 52, 675-678.

Ruiz, L., Sánchez, B., de los Reyes-Gavilán, C. G., Gueimonde, M., and Margolles, A. (2009) Coculture of Bifidobacterium longum and Bifidobacterium breve alters their protein expression profiles and enzymatic activities. Int. J. Food Microbiol. 133, 148-153. crossref(new window)

Saavedra, J. M., Abi-Hanna, A., Moore, N., and Yolken, R. H. (2004) Long-term consumption of infant formulas containing live probiotic bacteria: tolerance and safety. Am. J. Clin. Nutr. 79, 261-267.

Sadat-Mekmene, L., Genay, M., Atlan, D., Lortal, S., and Gagnaire, V. (2011a) Original features of cell-envelope proteinases of Lactobacillus helveticus: A review. Int. J. Food Microbiol. 146, 1-13. crossref(new window)

Sadat-Mekmene, L., Jardin, J., Corre, C., Mollé, D., Richoux, R., Delage, M. M., Lortal, S., and Gagnaire, V. (2011b) Simultaneous presence of PrtH and PrtH2 proteinases in strains improves breakdown of the pure αs1-casein. Appl. Environ. Microbiol. 77, 179-186. crossref(new window)

Seppo, L., Kerojoki, O., Suomalainen, T., and Korpela, R. (2002) The effect of a Lactobacillus helveticus LBK-16 H fermented milk on hypertension - a pilot study on humans. Milchwissenschaft 57, 124-127.

Silva, S. V., Pihlanto, A., and Malcata, F. X. (2006) Bioactive peptides in ovine and caprine cheeselike systems prepared with proteases from Cynara cardunculus. J. Dairy Sci. 89, 3336-3344. crossref(new window)

Siezen, R. J. (1999) Multi-domain, cell-envelope proteinases of lactic acid bacteria. Antonie van Leeuwoenhoek 76, 139-155. crossref(new window)

Takano, T. (2002) Anti-hypertensive activity of fermented dairy products containing biogenic peptides. Antonie van Leeuwenhoek 82, 333-340. crossref(new window)

Tauzin, J., Miclo, L., and Gaillard, J. L. (2002) Angiotensin-I-converting enzyme inhibitory peptides from tryptic hydrolysate of bovine αs2-casein. FEBS Lett. 531, 369-374. crossref(new window)

Tsakalidou, E., Anastasiou, R., Vandenberghe, I., Vanbeeumen, J., and Kalantzopoulos, G. (1999) Cell-wall-bound proteinase of Lactobacillus delbrueckii subsp. lactis ACA-DC 178: characterization and specificity for β-casein. Appl. Environ. Microbiol. 65, 2035-2040.

Yamamoto, N., Akino, A., and Takano, T. (1994) Antihypertensive effect of peptides derived from casein by an extracellular proteinase from Lactobacillus helveticus CP790. J. Dairy Sci. 77, 917-922. crossref(new window)

Zahraa, N. (2010) Le peptide κ-CN(f106-109) du lait: propriétés nutritionnelles, biologiques et techno-fonctionnelles. Mémoire de M2, UHP Nancy 1.