Advanced SearchSearch Tips
Construction of a Recombinant Leuconostoc mesenteroides CJNU 0147 Producing 1,4-Dihydroxy-2-Naphthoic Acid, a Bifidogenic Growth Factor
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Construction of a Recombinant Leuconostoc mesenteroides CJNU 0147 Producing 1,4-Dihydroxy-2-Naphthoic Acid, a Bifidogenic Growth Factor
Eom, Ji-Eun; Moon, Gi-Seong;
  PDF(new window)
1,4-Dihydroxy-2-naphthoic acid (DHNA), a precursor of menaquinone (vitamin K2), has an effect on growth stimulation of bifidobacteria and prevention of osteoporosis, making it a promising functional food material. Therefore, we tried to clone the menB gene encoding DHNA synthase from Leuconostoc mesenteroides CJNU 0147. Based on the genome sequence of Leu. mesenteroides ATCC 8293 (GenBank accession no., CP000414), a primer set (Leu_menBfull_F and Leu_menBfull_R) was designed for the PCR amplification of menB gene of CJNU 0147. A DNA fragment (1,190 bp), including the menB gene, was amplified, cloned into pGEM-T Easy vector, and sequenced. The deduced amino acid sequence of MenB (DHNA synthase) protein of CJNU 0147 had a 98% similarity to the corresponding protein of ATCC 8293. The menB gene was subcloned into pCW4, a lactic acid bacteria - E. coli shuttle vector, and transferred to CJNU 0147. The transcription of menB gene of CJNU 0147 (pCW4::menB) was increased, when compared with those of CJNU 0147 (pCW4) and CJNU 0147 (−). The DHNA was produced from it at a detectable level, indicating that the cloned menB gene of CJNU 0147 encoded a DHNA synthase which is responsible for the production of DHNA, resulting in an increase of bifidogenic growth stimulation activity.
1;4-dihydroxy-2-naphthoic acid;Leuconostoc mesenteroides;DHNA synthase;menB gene;lactic acid bacteria;
 Cited by
Aggarwal, J., Swami, G., and Kumar, M. (2013) Probiotics and their effects on metabolic diseases: An update. J. Clin. Diagn. Res. 7, 173-177.

An, H. M., Baek, E. H., Jang, S., Lee, D. K., Kim, M. J., Kim, J. R., Lee, K. O., Park, J. G., and Ha, N. J. (2010) Efficacy of lactic acid bacteria (LAB) supplement in management of constipation among nursing home residents. Nutr. J. 9, 5. crossref(new window)

Chen, T., Wu, Q., Li, S., Xiong, S., Jiang, S., Tan, Q., Zhang, Z., Zhu, D., and Wei, H. (2014) Microbiological quality and characteristics of probiotic products in China. J. Sci. Food Agric. 94, 131-138. crossref(new window)

Chung, C. H. and Day, D. F. (2002) Glucooligosaccharides from Leuconostoc mesenteroides B-742 (ATCC 13146): a potential prebiotic. J. Ind. Microbiol. Biotechnol. 29, 196-199. crossref(new window)

Chung, C. H. and Day, D. F. (2004) Efficacy of Leuconostoc mesenteroides (ATCC 13146) isomaltooligosaccharides as a poultry prebiotic. Poultry Sci. 83, 1302-1306. crossref(new window)

Eom, J. E. and Moon, G. S. (2010) Leuconostoc mesenteroides producing bifidogenic growth stimulator via whey fermentation. Food Sci. Biotechnol. 19, 235-238. crossref(new window)

Falentin, H., Deutsch, S. M., Jan, G., Loux, V., Thierry, A., Parayre, S., Maillard, M. B., Dherbécourt, J., Cousin, F. J., Jardin, J., Siguier, P., Couloux, A., Barbe, V., Vacherie, B., Wincker, P., Gibrat, J. F., Gaillardin, C., and Lortal, S. (2010) The complete genome of Propionibacterium freudenreichii CIRM-BIA1, a hardy actinobacterium with food and probiotic applications. PLoS One 23, e11748.

Foligné, B., Daniel, C., and Pot, B. (2013) Probiotics from research to market: the possibilities, risks and challenges. Curr. Opin. Microbiol. 16, 284-292. crossref(new window)

Fukuda, S., Toh, H., Hase, K., Oshima, K., Nakanishi, Y., Yoshimura, K., Tobe, T., Clarke, J. M., Topping, D. L., Suzuki, T., Taylor, T. D., Itoh, K., Kikuchi, J., Morita, H., Hattori, M., and Ohno, H. (2011) Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469, 543-547. crossref(new window)

Fukumoto, S., Toshimitsu, T., Matsuoka, S., Maruyama, A., Oh-Oka, K., Takamura, T., Nakamura, Y., Ishimaru, K., Fujii-Kuriyama, Y., Ikegami, S., Itou, H., and Nakao, A. (2014) Identification of a probiotic bacteria-derived activator of the aryl hydrocarbon receptor that inhibits colitis. Immunol. Cell Biol. 92, 460-465. crossref(new window)

Isawa, K., Hojo, K., Yoda, N., Kamiyama, T., Makino, S., Saito, M., Sugano, H., Mizoguchi, C., Kurama, S., Shibasaki, M., Endo, N., and Sato, Y. (2002) Isolation and identification of a new bifidogenic growth stimulator produced by Propionibacterium freudenreichii ET-3. Biosci. Biotechnol. Biochem. 66, 679-681. crossref(new window)

Johnson, L. P., Walton, G. E., Psichas, A., Frost, G. S., Gibson, G. R., and Barraclough, T. G. (2015) Prebiotics modulate the effects of antibiotics on gut microbial diversity and functioning in vitro. Nutrients 7, 4480-4497. crossref(new window)

Kang, J. E., Kim, T. J., and Moon, G. S. (2015) A novel Lactobacillus casei LP1 producing 1,4-dihydroxy-2-naphthoic acid, a bifidogenic growth stimulator. Prev. Nutr. Food Sci. 20, 78-81. crossref(new window)

Kanmani, P., Satish Kumar, R., Yuvaraj, N., Paari, K. A., Pattukumar, V., and Arul, V. (2013) Probiotics and its functionally valuable products-a review. Crit. Rev. Food Sci. Nutr. 53, 641-658. crossref(new window)

Kothari, D. and Goyal, A. (2015) Gentio-oligosaccharides from Leuconostoc mesenteroides NRRL B-1426 dextransucrase as prebiotics and as a supplement for functional foods with anti-cancer properties. Food Funct. 6, 604-611. crossref(new window)

Marteau, P., Pochart, P., Doré, J., Béra-Maillet, C., Bernalier, A., and Corthier, G. (2001) Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl. Environ. Microbiol. 67, 4939-4942. crossref(new window)

Meganathan, R. and Bentley, R. (1979) Menaquinone (vitamin K2) biosynthesis: conversion of o-succinylbenzoic acid to 1,4-dihydroxy-2-naphthoic acid by Mycobacterium phlei enzymes. J. Bacteriol. 140, 92-98.

Meganathan, R., Folger, T., and Bentley, R. (1980) Conversion of o-succinylbenzoate to dihydroxynaphthoate by extracts of Micrococcus luteus. Biochemistry 19, 785-789. crossref(new window)

Moon, G. S. (2009) Bifidobacterial growth stimulation by Lactobacillus casei via whey fermentation. J. Food Sci. Nutr. 14, 265-268. crossref(new window)

Moon, G. S., Lee, Y. D., and Kim, W. J. (2008) Screening of a novel lactobacilli replicon from plasmids of Lactobacillus reuteri KCTC 3678. Food Sci. Biotechnol. 17, 438-441.

Moon, G. S., Wegmann, U., Gunning, A. P., Gasson, M. J., and Narbad, A. (2009) Isolation and characterization of a theta-type cryptic plasmid from Bifidobacterium longum FI 10564. J. Microbiol. Biotechnol. 19, 403-408. crossref(new window)

Nagata, K., Inatsu, S., Tanaka, M., Sato, H., Kouya, T., Taniguchi, M., and Fukuda, Y. (2010) The bifidogenic growth stimulator inhibits the growth and respiration of Helicobacter pylori. Helicobacter 15, 422-429. crossref(new window)

Park, W. J., Lee, K. H., Lee, J. M., Lee, H. J., Kim, J. H., Lee, J. H., Chang, H. C., and Chung, D. K. (2004) Characterization of pC7 from Lactobacillus paraplantarum C7 derived from kimchi and development of lactic acid bacteria-Escherichia coli shuttle vector. Plasmid 52, 84-88. crossref(new window)

Pattani, R., Palda, V. A., Hwang, S. W., and Shah, P. S. (2013) Probiotics for the prevention of antibiotic-associated diarrhea and Clostridium difficile infection among hospitalized patients: systematic review and meta-analysis. Open Med. 7, e56-e67.

Rastall, R. A. (2010) Functional oligosaccharides: application and manufacture. Annu. Rev. Food Sci. Technol. 1, 305-339. crossref(new window)

Sambrook, J. and Russell, D. W. (2001) Molecular cloning: A laboratory manual. 3rd ed. Cold Spring Harbor Laboratory Press, New York, NY, USA. A3.2-3.3.

Taber, H. W., Dellers, E. A., and Lombardo, L. R. (1981) Menaquinone biosynthesis in Bacillus subtilis: isolation of men mutants and evidence for clustering of men genes. J. Bacteriol. 145, 321-327.

Tojo, R., Suárez, A., Clemente, M. G., de los Reyes-Gavilán, C. G., Margolles, A., Gueimonde, M., and Ruas-Madiedo, P. (2014) Intestinal microbiota in health and disease: role of bifidobacteria in gut homeostasis. World J. Gastroenterol. 20, 15163-15176. crossref(new window)

Tsai, Y. T., Cheng, P. C., and Pan, T. M. (2012) The immunomodulatory effects of lactic acid bacteria for improving immune functions and benefits. Appl. Microbiol. Biotechnol. 96, 853-862. crossref(new window)

Vandenplas, Y., Zakharova, I., and Dmitrieva, Y. (2015) Oligosaccharides in infant formula: more evidence to validate the role of prebiotics. Brit. J. Nutr. 113, 1339-1344. crossref(new window)

Young, I. G. (1975) Biosynthesis of bacterial menaquinones. Menaquinone mutants of Escherichia coli. Biochemistry 14, 399-406. crossref(new window)

Zhong, L., Zhang, X., and Covasa, M. (2014) Emerging roles of lactic acid bacteria in protection against colorectal cancer. World J. Gastroenterol. 20, 7878-7886. crossref(new window)