Advanced SearchSearch Tips
Inhibiting the Growth of Escherichia coli O157:H7 in Beef, Pork, and Chicken Meat using a Bacteriophage
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Inhibiting the Growth of Escherichia coli O157:H7 in Beef, Pork, and Chicken Meat using a Bacteriophage
Seo, Jina; Seo, Dong Joo; Oh, Hyejin; Jeon, Su Been; Oh, Mi-Hwa; Choi, Changsun;
  PDF(new window)
This study aimed to inhibit Escherichia coli (E. coli) O157:H7 artificially contaminated in fresh meat using bacteriophage. Among 14 bacteriophages, the highly lytic bacteriophage BPECO19 strain was selected to inhibit E. coli O157:H7 in artificially contaminated meat samples. Bacteriophage BPECO19 significantly reduced E. coli O157:H7 bacterial load in vitro in a multiplicity of infection (MOI)-dependent manner. E. coli O157:H7 was completely inhibited only in 10 min in vitro by the treatment of 10,000 MOI BPECO19. The treatment of BPECO19 at 100,000 MOI completely reduced 5 Log CFU/cm2 E. coli O157:H7 bacterial load in beef and pork at 4 and 8h, respectively. In chicken meat, a 4.65 log reduction of E. coli O157:H7 was observed at 4 h by 100,000 MOI. The treatment of single bacteriophage BPECO19 was an effective method to control E. coli O157:H7 in meat samples.
bacteriophage;Escherichia coli O157:H7;inhibition;meat;multiplicity of infection (MOI);
 Cited by
Antibacterial Properties of Endophytic Bacteria Isolated from a Fern Species Equisetum arvense L. Against Foodborne Pathogenic Bacteria Staphylococcus aureus and Escherichia coli O157:H7, Foodborne Pathogens and Disease, 2017, 14, 1, 50  crossref(new windwow)
Reduction of Escherichia coli O157:H7 in Biofilms Using Bacteriophage BPECO 19, Journal of Food Science, 2017, 82, 6, 1433  crossref(new windwow)
Abuladze, T., Li, M., Menetrez, M. Y., Dean, T., Senecal, A., and Sulakvelidze, A. (2008) Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7. Appl. Environ. Microbiol. 74, 6230-6238. crossref(new window)

Ackers, M.-L., Mahon, B. E., Leahy, E., Goode, B., Damrow, T., Hayes, P. S., Bibb, W. F., Rice, D. H., Barrett, T. J., and Hutwagner, L. (1998) An outbreak of Escherichia coli O157:H7 infections associated with leaf lettuce consumption. J. Infect. Dis. 177, 1588-1593. crossref(new window)

Atterbury, R. (2009) Bacteriophage biocontrol in animals and meat products. Microb. Biotechnol. 2, 601-612. crossref(new window)

Bigwood, T., Hudson, J., Billington, C., Carey-Smith, G., and Heinemann, J. (2008) Phage inactivation of foodborne pathogens on cooked and raw meat. Food Microbiol. 25, 400-406. crossref(new window)

Carlton, R., Noordman, W., Biswas, B., De Meester, E., and Loessner, M. (2005) Bacteriophage P100 for control of Listeria monocytogenes in foods: Genome sequence, bioinformatic analyses, oral toxicity study, and application. Regul. Toxicol. Pharmacol. 43, 301-312. crossref(new window)

Carter, C. D., Parks, A., Abuladze, T., Li, M., Woolston, J., Magnone, J., Senecal, A., Kropinski, A. M., and Sulakvelidze, A. (2012) Bacteriophage cocktail significantly reduces Escherichia coli O157:H7 contamination of lettuce and beef, but does not protect against recontamination. Bacteriophage 2, 178-185. crossref(new window)

Center for Disease Control and Preventino (CDC) (2010) Multistate Outbreak of E. coli O157:H7 Infections Associated with Beef from Fairbank Farms. Available from http: Accessed Jan. 4, 2016.

Cho, G.-Y., Lee, M. H., and Choi, C. (2011) Survival of Escherichia coli O157:H7 and Listeria monocytogenes during kimchi fermentation supplemented with raw pork meat. Food Control 22, 1253-1260. crossref(new window)

Cho, S., Kim, J., Oh, K.-H., Hu, J., Seo, J., Oh, S., Hur, M., Choi, Y.-H., Youn, S., and Chung, G. (2014) Outbreak of enterotoxigenic Escherichia coli O169 enteritis in schoolchildren associated with consumption of kimchi, Republic of Korea, 2012. Epidemiol. Infect. 142, 616-623. crossref(new window)

Clark, J. R. and March, J. B. (2006) Bacteriophages and biotechnology: Vaccines, gene therapy and antibacterials. Trends Biotechnol. 24, 212-218. crossref(new window)

Clokie, M. R. and Kropinski, A. M. (2009). Bacteriophages: Methods and Protocols, Volume 1 Isolation, Characterization and Interactions. Humana Press, NY, pp. 161-202.

Gill, J., Sabour, P., Leslie, K., and Griffiths, M. (2006) Bovine whey proteins inhibit the interaction of Staphylococcus aureus and bacteriophage K. J. Appl. Microbiol. 101, 377-386. crossref(new window)

Greer, G. G. (2005) Bacteriophage control of foodborne bacteria. J. Food Prot. 68, 1102-1111. crossref(new window)

Hagens, S. and Offerhaus, M. L. (2008) Bacteriophages-New weapons for food safety. Food Technol. 62, 46.

Hudson, J., Billington, C., Cornelius, A., Wilson, T., On, S., Premaratne, A., and King, N. (2013) Use of a bacteriophage to inactivate Escherichia coli O157:H7 on beef. Food Microbiol. 36, 14-21. crossref(new window)

Hudson, J., Billington, C., Wilson, T., and On, S. (2015) Effect of phage and host concentration on the inactivation of Escherichia coli O157:H7 on cooked and raw beef. Food Sci. Technol. Int. 21, 104-109. crossref(new window)

Kang, S., Ryu, S., Chae, J., Eo, S., Woo, G., and Lee, J. (2013) Occurrence and characteristics of enterohemorrhagic Escherichia coli O157 in calves associated with diarrhoea. Vet. Microbiol. 98, 323-328.

Kutter, E. and Sulakvelidze, A. (2005). Bacteriophages: Biology and applications. CRC Press. FL, pp. 5-22.

Lee, M. and Choi, C. (2012) Effect of UV or ethanol treatment on the Arcobacter butzleri contaminated on pork. Korean J. Food Sci. An. 32, 204-211. crossref(new window)

Leverentz, B., Conway, W. S., Camp, M. J., Janisiewicz, W. J., Abuladze, T., Yang, M., Saftner, R., and Sulakvelidze, A. (2003) Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Appl. Environ. Microbiol. 69, 4519-4526. crossref(new window)

O'Flaherty, S., Coffey, A., Meaney, W., Fitzgerald, G., and Ross, R. (2005) Inhibition of bacteriophage K proliferation on Staphylococcus aureus in raw bovine milk. Lett. Appl. Microbiol. 41, 274-279. crossref(new window)

O'Flynn, G., Ross, R., Fitzgerald, G., and Coffey, A. (2004) Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157:H7. Appl. Environ. Microbiol. 70, 3417-3424. crossref(new window)

Oh, K. H., Jung, S. Y., and Jung, J. T. (2013) Cases of laboratory diagnosis and molecular epidemiological characterization of waterborne and foodborne disease outbreaks in Korea, 2013. Public Health Weekly Report. 7, 664-669.

Sabour, P. M. and Griffiths, M. W. (2010). Bacteriophages in the control of food-and waterborne pathogens. American Society for Microbiology Press, Washington DC, USA, pp. 217-235.

Sharma, M., Patel, J. R., Conway, W. S., Ferguson, S., and Sulakvelidze, A. (2009) Effectiveness of bacteriophages in reducing Escherichia coli O157:H7 on fresh-cut cantaloupes and lettuce. J. Food Prot. 72, 1481-1485. crossref(new window)

Sillankorva, S. M., Oliveira, H., and Azeredo, J. (2012) Bacteriophages and their role in food safety. Int J Microbiol. 2012, Article ID 863945.

Verraes, C., Van Boxstael, S., Van Meervenne, E., Van Coillie, E., Butaye, P., Catry, B., de Schaetzen, M., Van Huffel, X., Imberechts, H., and Dierick, K. (2013) Antimicrobial resistance in the food chain: A review. Int. J. Environ. Res. Public Health 10, 2643-2669. crossref(new window)

Viazis, S., Akhtar, M., Feirtag, J., and Diez-Gonzalez, F. (2011a) Reduction of Escherichia coli O157:H7 viability on hard surfaces by treatment with a bacteriophage mixture. Int. J. Food Microbiol. 145, 37-42. crossref(new window)

Viazis, S., Akhtar, M., Feirtag, J., and Diez-Gonzalez, F. (2011b) Reduction of Escherichia coli O157:H7 viability on leafy green vegetables by treatment with a bacteriophage mixture and trans-cinnamaldehyde. Food Microbiol. 28, 149-157.

Worley-Morse, T. O., Zhang, L., and Gunsch, C. K. (2014) The long-term effects of phage concentration on the inhibition of planktonic bacterial cultures. Env. Sci. Process. Impact. 16, 81-87. crossref(new window)