Advanced SearchSearch Tips
Analysis of Methionine Oxidation in Myosin Isoforms in Porcine Skeletal Muscle by LC-MS/MS Analysis
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Analysis of Methionine Oxidation in Myosin Isoforms in Porcine Skeletal Muscle by LC-MS/MS Analysis
Jeong, Jin-Yeon; Jung, Eun-Young; Jeong, Tae-Chul; Yang, Han-Sul; Kim, Gap-Don;
  PDF(new window)
The purpose of this study was to analyze oxidized methionines in the myosin isoforms of porcine longissimus thoracis, psoas major, and semimembranosus muscles by liquid chromatography (LC) and mass spectrometry (MS). A total of 836 queries matched to four myosin isoforms (myosin-1, -2, -4, and -7) were analyzed and each myosin isoform was identified by its unique peptides (7.3-13.3). Forty-four peptides were observed from all three muscles. Seventeen peptides were unique to the myosin isoform and the others were common peptides expressed in two or more myosin isoforms. Five were identified as oxidized peptides with one or two methionine sulfoxides with 16 amu of mass modification. Methionines on residues 215 (215), 438 (438), 853 (851), 856 (854), 1071 (1069), and 1106 (1104) of myosin-1 (myosin-4) were oxidized by the addition of oxygen. Myosin-2 had two oxidized methionines on residues 215 and 438. No queries matched to myosin-7 were observed as oxidized peptides. LC-MS/MS allows analysis of the oxidation of specific amino acids on specific residue sites, as well as in specific proteins in the food system.
protein oxidation;LC-MS/MS;myosin;methionine;
 Cited by
Proteomic profiling of oxidized cysteine and methionine residues by hydroxyl radicals in myosin of pork, Food Chemistry, 2017  crossref(new windwow)
Evolution of oxidised peptides during the processing of 9 months Spanish dry-cured ham, Food Chemistry, 2018, 239, 823  crossref(new windwow)
Abreu, E., Quirox-Rothe, E., Mayoral, A. I., Vivo, J. M., Robina, Á., Guillén, M. T., Agüera, E., and Rivero, J. L. (2006) Myosin heavy chain fibre types and fibre sizes in nulliparous and primiparous ovariectomized Iberian sows: Interaction with two alternative rearing systems during the fattening period. Meat Sci. 74, 359-372. crossref(new window)

Armenteros, M. Heinonen, M., Ollilainen, V., Toldrá, F., and Estévez, M. (2009) Analysis of protein carbonyls in meat products by using the DNPH method, fluorescence spectroscopy and liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). Meat Sci. 83, 104-112. crossref(new window)

Bernevic, B., Petre, B. A., Galetskiy, D., Werner, C., Wicke, M., Schellander, K., and Przybylski, M. (2011) Degradation and oxidation postmortem of myofibrillar proteins in porcine skeleton muscle revealed by high resolution mass spectrometric proteome analysis. Int. J. Mass Spectrom. 305, 217-227. crossref(new window)

Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. crossref(new window)

Chang, K. C., Costa, N., Blackley, R., Southwood, O., Evans, G., Plastow, G., Wood, J. D., and Richardson, R. I. (2003) Relationships of myosin heavy chain fibre types to meat quality traits in traditional and modern pigs. Meat Sci. 64, 93-103. crossref(new window)

Chen, M. and Cook, K. D. (2007) Oxidation artifacts in the electrospray mass spectrometry of Aβ peptide. Anal. Chem. 79, 2031-2036. crossref(new window)

Choi, Y. M., Ryu, Y. C., and Kim, B. C. (2007) Influence of myosin heavy- and light chain isoforms on early postmortem glycolytic rate and pork quality. Meat Sci. 76, 281-288. crossref(new window)

Coirault, C., Guellich, A., Barbry, T., Samuel, J. L., Riou, B., and Lecarpentier, Y. (2007) Oxidative stress of myosin contributes to skeletal muscle dysfunction in rats with chronic heart failure. Am. J. Physiol. Heart Circ. Physiol. 292, H1009-H1017. crossref(new window)

Daneshvar, B., Frandsen, H., Artrup, H., and Dragsted, L. O. (1997) γ-Glutamyl semialdehyde and α-amino-adipic semialdehyde: Biomarkers of oxidative damage to proteins. Biomarkers 2, 117-123. crossref(new window)

Decker, E. A., Xiong, Y. L., Calvert, J. T., Crum, A. D., and Blanchard, S. P. (1993) Chemical, physical, and functional-properties of oxidized turkey white muscle myofibrillar proteins. J. Agric. Food Chem. 41, 186-189. crossref(new window)

Erickson, J. R., Joiner, M. L., Guan, X., Kutschke, W., Yang, J., Oddis, C. V., Bartlett, R. K., Lowe, J. S., O’Donnell, S. E., Aykin-Burns, N., Zimmerman, M. C., Zimmerman, K. M, Ham, A. J., Weiss, R. M., Spitz, D. R., Shea, M. A., Colbrau, R. J., Mohler, P. J., and Anderson, M. E. (2008) A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133, 462-474. crossref(new window)

Estévez, M., Ollilainen, V., and Heinonen, M. (2009) Analysis of protein oxidation markers α-aminoadipic and γ-glutamic semialdehydes in food proteins using liquid chromatography (LC)-electrospray ionization (ESI)-multistage tandem mass spectrometry (MS). J. Agric. Food Chem. 57, 3901-3910. crossref(new window)

Garrison, W. M. (1987) Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins. Chem. Rev. 87, 381-398. crossref(new window)

Ghesquière, B. and Gevaert, K. (2014) Proteomics methods to study methionine oxidation. Mass Spectrom. Rev. 33, 147-156. crossref(new window)

Ghesquière, B., Jonckheere, V., Colaert, N., Van Durme, J., Timmerman, E., Goethals, M., Schymkowita, J., Rousseau, F., Vandekerckhove, J., and Gevaert, K. (2011) Redox proteomics of protein-bound methionine oxidation. Mol. Cell Proteomics 10, M110.006866.

Hanan, T. and Shaklai, N. (1995) Peroxidative interaction of myoglobin and myosin. Eur. J. Biochem. 233, 930-936. crossref(new window)

Hardine, S. C., Larue, C. T., Oh, M. H., Jain, V., and Huber, S. C. (2009) Coupling oxidative signals to protein phosphorylation via methionine oxidation in Arabidopsis. Biochem. J. 422, 305-312. crossref(new window)

Jongberg, S., Gislason, N. E., Lund, M. N., Skibsted, L. H., and Waterhouse, A. L. (2011) Thiol-quinone adduct formation in myofibrillar proteins detected by LC-MS. J. Agric. Food Chem. 59, 6900-6905. crossref(new window)

Kim, G. D. (2014) Analysis of myosin heavy chain isoforms from logissimus toracis muscle of Hanwoo steer by electrophoresis and LC-MS/MS. Korean J. Food Sci. An. 34, 656-664. crossref(new window)

Kim, G. D., Jeong, J. Y., Yang, H. S., and Joo, S. T. (2015) Analysis of oxidized methionione in myosin isoforms of porcine longissimus thoracis muscle at 24 h postmortem. Proceed. 61st Int. Cong. Meat Sci. Technol., Clermont-Ferrand, France, pp. 163.

Kim, G. D., Ryu, Y. C., Jeong, J. Y., Yang, H. S., and Joo, S. T. (2013) Relationship between pork quality and characteristics of muscle fibers classified by the distribution of myosin heavy chain isoforms. J. Anim. Sci. 91, 5525-5534. crossref(new window)

Kim, G. D., Ryu, Y. C., Jo, C., Lee, J. G., Yang, H. S., Jeong, J. Y., and Joo, S. T. (2014) The characteristics of myosin heavy chain-based fiber types in porcine longissimus dorsi muscle. Meat Sci. 96, 712-718. crossref(new window)

Lefaucheur, L., Ecolan, P., Plantard, L., and Gueguen, N. (2002) New insights into muscle fiber types in the pig. J. Histochem. Cytochem. 50, 719-730. crossref(new window)

Levine, R. L. (1984) Mixed-function oxidation of histidine residues. Methods Enzymol. 107, 370-376. crossref(new window)

Liu, H., Ponniah, G., Neill, A., Patel, R., and Andrien, B. (2013) Accurate determination of protein methionine oxidation by stable isotope labelling and LC-MS analysis. Anal. Chem. 85, 11705-11709. crossref(new window)

Lund, M. N., Heinonen, M., Baron, C. P., and Estévez, M. (2011) Protein oxidation in muscle foods: A review. Mol. Nutr. Food Res. 55, 83-95. crossref(new window)

Lund, M. N., Lametsch, R., Hviid, M. S., Jensen, O. N., and Skibsted, L. H. (2007) High-oxygen packaging atmosphere influences protein oxidation and tenderness of porcine longissimus dorsi during chill storage. Meat Sci. 77, 295-303. crossref(new window)

Lund, M. N., Luxford, C., Skibsted, L. H., and Davies, M. J. (2008) Oxidation of myosin by heam proteins generates myosin radicals and protein cross-links. Biochem. J. 410, 565-574. crossref(new window)

Martinaud, A., Mercier, Y., Marinova, P., Tassy, C. Gatellier, P., and Renerre, M. (1997) Comparison of oxidative processes on myofibrillar proteins from beef during maturation and by different model oxidation systems. J. Agric. Food Chem. 45, 2481-2487. crossref(new window)

Oh-Ishie, M., Ueno, T., and Maeda, T. (2003) Proteomic method detects oxidatively induced protein carbonyls in muscles of a diabetes model Otsuka Long-Evans Tokushima fatty (Oletf) rat. Free Radical Biol. Med. 34, 11-22. crossref(new window)

Oliver, C. N., Ahn, B. W., Moerman, E. J., Goldstein, S., and Stadtman, E. R. (1987) Age-related changes in oxidized proteins. J. Biol. Chem. 262, 5488-5491.

Park, S., K., Gunawan, A. M., Scheffler, T. L., Grant, A. L., and Gerrard, D. E. (2009) Myosin heavy chain isoform content and energy metabolism can be uncoupled in pig skeletal muscle. J. Anim. Sci. 87, 522-531.

Rayment, I. Rypniewski, W. R., Schmidt-Base, K., Smith, R., Tomchick, D. R., Benning, M. M., Winkelmann, D. A., Wesenberg, G., and Holden, H. M. (1993) Three dimensional structure of myosin subfragment-1: A molecular motor. Science 261, 50-58. crossref(new window)

Rowe, L. J., Maddock, K. R., Lonergan, S. M., and Huff-Lonergan, E. (2004) Influence of early postmortem protein oxidation on beef quality. J. Anim. Sci. 82, 785-793. crossref(new window)

Shacter, E. (2000) Quantification and significance of protein oxidation in biological samples. Drug Met. Rev. 32, 307-326. crossref(new window)

Soladoye, O. P., Juárez, M. L., Aalhus, J. L., Shand, P., and Estévez, M. (2015) Protein oxidation in processed meat: Mechanisms and potential implications on human health. Compr. Rev. Food Sci. F. 14, 106-122. crossref(new window)

Stadtman, E. R. (1993) Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu. Rev. Biochem. 62, 797-821. crossref(new window)

Stadtman, E. R. and Berlett, B. S. (1988) Fenton chemistry revisited: Amino acid oxidation. Basic Life Sci. 49, 131-136.

Stadtman, E. R. and Levine, R. L. (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25, 207-218. crossref(new window)

Tokunaga, M. Sutoh, K. Toyoshima, C. and Wayabashi, T. (1987) Location of the ATPase site of myosin determined by three-dimensional electron microscopy. Nature 329, 635-638. crossref(new window)

Vogt, W. (1995) Oxidation of methionyl residues in proteins: Tools, targets, and reversal. Free Radic. Biol. Med. 18, 93-105. crossref(new window)

Winterbourn, C. C. (1990) Oxidative reactions of hemoglobin. Methods Enzymol. 186, 265-272. crossref(new window)

Xiong, Y. L. (2000) Protein oxidation and implications for muscle food quality. In: Decker, E., Faustman, C., Clemente, J. L. B., Antioxidant in muscle foods. Chichester, UK, Wiley. pp. 85-111.