JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Application of Next Generation Sequencing to Investigate Microbiome in the Livestock Sector
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Animal Environmental Science
  • Volume 21, Issue 3,  2015, pp.93-98
  • Publisher : Korean Association for Livestock Housing and Environment
  • DOI : 10.11109/JAES.2015.21.3.93
 Title & Authors
Application of Next Generation Sequencing to Investigate Microbiome in the Livestock Sector
Kim, Minseok; Baek, Youlchang; Oh, Young Kyoon;
  PDF(new window)
 Abstract
The objective of this study was to review application of next-generation sequencing (NGS) to investigate microbiome in the livestock sector. Since the 16S rRNA gene is used as a phylogenetic marker, unculturable members of microbiome in nature or managed environments have been investigated using the NGS technique based on 16S rRNA genes. However, few NGS studies have been conducted to investigate microbiome in the livestock sector. The 16S rRNA gene sequences obtained from NGS are classified to microbial taxa against the 16S rRNA gene reference database such as RDP, Greengenes and Silva databases. The sequences also are clustered into species-level OTUs at 97% sequence similarity. Microbiome similarity among treatment groups is visualized using principal coordinates analysis, while microbiome shared among treatment groups is visualized using a venn diagram. The use of the NGS technique will contribute to elucidating roles of microbiome in the livestock sector.
 Keywords
16S rRNA gene;Livestock sector;Microbiome;Next-generation sequencing;
 Language
Korean
 Cited by
 References
1.
Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., Knight, R., 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 7, 335-336. crossref(new window)

2.
Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A,, Turnbaugh, P.J., Fierer, N., Knight, R., 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U. S. A. 108 Suppl 1, 4516-4522. crossref(new window)

3.
Cole, J.R., Wang, Q., Fish, J.A., Chai, B., McGarrell, D.M., Sun, Y., Brown, C.T., Porras-Alfaro, A., Kuske, C.R., Tiedje, J. M., 2014. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic. Acids. Res. 42, D633- D642. crossref(new window)

4.
DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T., Dalevi, D., Hu, P., Andersen, G.L., 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069-5072. crossref(new window)

5.
Eden, P.A., Schmidt, T.M., Blakemore, R. P., Pace, N.R., 1991. Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA. Int. J. Syst. Bacteriol. 41, 324-325. crossref(new window)

6.
Freetly HC, Lindholm-Perry AK, Hales KE, Brown-Brandl TM, Kim M, Myer PR, Wells JE. 2015. Methane production and methanogen levels in steers that differ in residual gain. J. Anim. Sci. 93, 2375-2381. crossref(new window)

7.
Hwang, O.H., Raveendar, S., Kim, Y.J., Kim, J.H., Choi, J.W., Kim, T.H., Choi, D.Y., Jeon, C.O., Cho, S.B., Lee, K.T., 2014. Deodorization of pig slurry and characterization of bacterial diversity using 16S rDNA sequence analysis. J. Microbiol. 52, 918-929. crossref(new window)

8.
Kim, M., Morrison, M., Yu, Z., 2011a. Status of the phylogenetic diversity census of ruminal microbiomes. FEMS. Microbiol. Ecol. 76, 49-63. crossref(new window)

9.
Kim, M., Morrison, M., Yu, Z., 2011b. Phylogenetic diversity of bacterial communities in bovine rumen as affected by diets and microenvironments. Folia. Microbiol. 56, 453-458. crossref(new window)

10.
Kim, M., Morrison, M., Yu, Z., 2011c. Evaluation of different partial 16S rRNA gene sequence regions for phylogenetic analysis of microbiomes. J. Microbiol. Methods. 84, 81-87. crossref(new window)

11.
Kim, M., Yu, Z., 2012. Quantitative comparisons of select cultured and uncultured microbial populations in the rumen of cattle fed different diets. J. Anim. Sci. Biotechnol. 3, 28. crossref(new window)

12.
Kim, M., Wang, L., Morrison, M., Yu, Z., 2014a. Development of a phylogenetic microarray for comprehensive analysis of ruminal bacterial communities. J. Appl. Microbiol. 117, 949-960. crossref(new window)

13.
Kim, M., Kim, J., Kuehn, L.A., Bono, J.L., Berry, E.D., Kalchayanand, N., Freetly, H.C., Benson, A.K., Wells, J.E., 2014b. Investigation of bacterial diversity in the feces of cattle fed different diets. J. Anim. Sci. 92, 683-694. crossref(new window)

14.
Kumari, P., Choi, H.L., Sudiarto, S.I., 2015. Assessment of Bacterial Community Assembly Patterns and Processes in Pig Manure Slurry. PLoS. One. 10, e0139437. crossref(new window)

15.
Mosher, J.J., Bowman, B., Bernberg, E.L., Shevchenko, O., Kan, J., Korlach, J., Kaplan, L.A., 2014. Improved performance of the PacBio SMRT technology for 16S rDNA sequencing. J. Microbiol. Methods. 104, 59-60. crossref(new window)

16.
Myer, P.R., Smith, T.P., Wells, J.E., Kuehn, L.A., Freetly, H.C., 2015. Rumen microbiome from steers differing in feed efficiency. PLoS One. 10, e0129174. crossref(new window)

17.
Park, S.J., Kim, J., Lee, J.S., Rhee, S.K., Kim, H., 2014. Characterization of the fecal microbiome in different swine groups by high-throughput sequencing. Anaerobe. 28, 157-162. crossref(new window)

18.
Ruff-Roberts, A.L., Kuenen, J.G., Ward, D.M., 1994. Distribution of cultivated and uncultivated cyanobacteria and Chloroflexuslike bacteria in hot spring microbial mats. Appl. Environ. Microbiol. 60, 697-704.

19.
Schloss, P.D., Handelsman, J., 2004. Status of the microbial census. Microbiol. Mol. Biol. Rev. 68, 686-691. crossref(new window)

20.
Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D. H., Robinson, C.J., Sahl, J.W., Stres, B., Thallinger, G.G., Van Horn, D.J., Weber, C. F., 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537-7541. crossref(new window)

21.
Wei, S., Morrison, M., Yu, Z., 2013. Bacterial census of poultry intestinal microbiome. 92, 671-683. crossref(new window)

22.
Woese, C.R., Fox, G.E., 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. U. S. A. 74, 5088-5090. crossref(new window)

23.
Yilmaz, P., Parfrey, L.W., Yarza, P., Gerken, J., Pruesse, E., Quast, C., Schweer, T., Peplies, J., Ludwig, W., Glockner, F.O., 2014. The SILVA and "All-species Living Tree Project (LTP)" taxonomic frameworks. Nucleic. Acids. Res. 42, D643-D648. crossref(new window)

24.
Yu, Z., Morrison, M., 2004a. Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 70, 4800-4806. crossref(new window)

25.
Yu, Z., Morrison, M., 2004b. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques. 36, 808-812.

26.
Zhou, M., Hernandez-Sanabria, E., Guan, L.L., 2009. Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies. Appl. Environ. Microbiol. 75, 6524-6533. crossref(new window)