JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON SOME SCHUR ALGEBRAS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON SOME SCHUR ALGEBRAS
Choi, Eun-Mi; Lee, Hei-Sook;
  PDF(new window)
 Abstract
A Schur algebra was generalized to projective Schur algebra by admitting twisted group algebra. A Schur algebra is a projective Schur algebra with trivial 2-cocycle. In this paper we study situations that Schur algebra is a projective Schur algebra with nontrivial cocycle, and we find a criterion for a projective Schur algebra to be a Schur algebra.
 Keywords
group representation;character;Schur and projective Schur algebra;
 Language
English
 Cited by
1.
Comparative Study of Two Techniques for Ligament Balancing in Total Knee Arthroplasty for Severe Varus Knee: Medial Soft Tissue Release vs. Bony Resection of Proximal Medial Tibia, Knee Surgery & Related Research, 2013, 25, 1, 13  crossref(new windwow)
 References
1.
E. Aljadeff and J. Sonn, Projective Schur division algebras are abelian crossed products, J. Algebra 163 (1994), 795–805. crossref(new window)

2.
E. Choi, Projective representations, abelian F-groups, and central extensions, J. Algebra 160 (1993), 242–256. crossref(new window)

3.
E. Choi and H. Lee, Projective Schur algebras over a field of positive characteristic, Bull. Austral. Math. Soc. 58 (1998), 103-106. crossref(new window)

4.
F. DeMeyer and E. Ingraham, Separable algebras over commutative rings, LNM 181, Springer-Verlag, 1971

5.
F. DeMeyer and R. Mollin, The Schur group of a commutative ring, J. Pure Appl. Algebra 35 (1985), 117-122 crossref(new window)

6.
B. Huppert and N. Blackburn, Finite groups III, Springer-Verlag, Berlin, 1982

7.
G. Karpilovsky, Group representations, Vol 3, Elsevier Science, North-Holland, London, 1994

8.
P. Nelis, Schur and projective Schur groups of number rings, Canad. J. Math. 43 (1991), no. 3, 540-558 crossref(new window)

9.
P. Nelis and F. VanOystaeyen, The projective Schur subgroup of the Brauer group are root groups of finite groups, J. Algebra 137 (1991), 501-518 crossref(new window)

10.
W. F. Reynolds, Noncommutators and the number of projective characters of finite group, Proc. Symp, Pure Math. 47 (1987), Part 2, 71-74

11.
M. Suzuki, Group theory, Springer-Verlag, Berlin, 1978