JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A FREE ℤp-ACTION AND THE SEIBERG-WITTEN INVARIANTS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A FREE ℤp-ACTION AND THE SEIBERG-WITTEN INVARIANTS
Nakamura, Nobuhiro;
  PDF(new window)
 Abstract
We consider the situation that ${\mathbb{Z}_p}\;
 Keywords
4-manifold;Seiberg-Witten invariants;group action;
 Language
English
 Cited by
1.
$$G$$ G -monopole invariants on some connected sums of 4-manifolds, Geometriae Dedicata, 2015, 178, 1, 75  crossref(new windwow)
 References
1.
M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes: I, Ann. of Math. 86, 374-407. crossref(new window)

2.
S. K. Donaldson and P. B. Kronheimer, The Geometry of Four-Manifold, Oxford, 1990

3.
M. Furuta, A remark on a fixed point of finite group action on $S^4$, Topology 28 (1989), 35-38 crossref(new window)

4.
D. Kotschick, J. W. Morgan, and C. H. Taubes, Four-manifold without symplectic structures but with nontrivial Seiberg- Witt invariants, Math. Res. Lett. 2 (1995), 119-124. crossref(new window)

5.
J. W. Morgan, The Seiberg- Witten equations and application to the topology of smooth four-manifolds, Mathematical Notes, Princeton Univ, Press, 1996

6.
M. Ue, A note on Donaldson and Seiberg- Witten invariants for some reducible 4-manifolds (preprint)

7.
M. Ue, Exotic group actions in dimension four and Seiberg- Witten Theory (preprint) crossref(new window)

8.
E. Witten, Monopoles and 4-manifolds, Math. Res. Lett. 1 (1994), 769-796 crossref(new window)