JOURNAL BROWSE
Search
Advanced SearchSearch Tips
EQUIMULTIPLE GOOD IDEALS WITH HEIGHT 1
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
EQUIMULTIPLE GOOD IDEALS WITH HEIGHT 1
Kim, Mee-Kyoung;
  PDF(new window)
 Abstract
Let I be an ideal in a Gorenstein local ring A with the maximal ideal m. Then we say that I is an equimultiple good ideal in A, if I contains a reduction Q
 Keywords
Rees algebra;associated graded ring;Cohen-Macaulay ring;Gorenstein ring;a-invariant;
 Language
English
 Cited by
 References
1.
W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge studies in advanced mathematics, vol. 39, Cambridge University, Cambridge-New York-Port Chester-Sydney, 1993

2.
S. Goto, S. Iai, and M. Kim, Good ideals in Gorenstein local rings obtained by idealization, Proc. Amer. Math. Soc. (to appear)

3.
S. Gato, S. Iai, and K. Watanabe, Good ideals in Gorenstein local rings, Trans. Amer. Math. Soc. (to appear)

4.
S. Gato and M. Kim, Equimultiple good ideals, J. Math. Kyoto Univ. (to appear)

5.
S. Goto and K. Watanabe, On graded rings, I, J. Math. Soc. Japan 30 (1978), 179-213 crossref(new window)

6.
J. Herzog and E. Kunz (eds.), Der kanonische Modul eines Cohen-Macaulay-Rings, Lecture Notes in Mathematics, vol. 238, Springer-Verlag, Berlin${\cdot}$Heidelberg${\cdot}$New York${\cdot}$Tokyo, 1971.

7.
H. Matsumura, Commutative ring theory, Cambridge University, Cambridge${\cdot}$London${\cdot}$Sydney, 1986.

8.
M. Nagata, Local rings, Interscience, 1962

9.
P. Valabrega and G. Valla, Form rings and regular sequences, Nagoya Math. J. 72 (1978),93-101.