JOURNAL BROWSE
Search
Advanced SearchSearch Tips
TORSION IN THE HOMOLOGY OF THE DOUBLE LOOP SPACES OF COMPACT SIMPLE LIE GROUPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
TORSION IN THE HOMOLOGY OF THE DOUBLE LOOP SPACES OF COMPACT SIMPLE LIE GROUPS
Choi, Young-Gi; Yoon, Seong-Hee;
  PDF(new window)
 Abstract
We study the torsions in the integral homology of the double loop space of the compact simple Lie groups by determining the higher Bockstein actions on the homology of those spaces through the Bockstein lemma and computing the Bockstein spectral sequence.
 Keywords
p-torsion;Bockstein spectral sequence;Lie group;loop space;
 Language
English
 Cited by
 References
1.
R. Bott, The space of loops on a Lie group, Michigan Math. J. 5 (1958), 35-61 crossref(new window)

2.
Y. Choi, The homology of $\Omega^{2}S_{p}(n)$ and $\Omega_{0}^{3}S_{p}(n)$, Comm. Korean Math. Soc. 9 (1994), 205-213

3.
Y. Choi, Homology of the double and triple loop space of SO(n), Math. Z. 222 (1996), 59-80 crossref(new window)

4.
Y. Choi and S. Yoon, Homology of triple loop space of the exceptional Lie group $F_{4}$, J. Korean Math. Soc. 35 (1998), 149-164

5.
Y. Choi and S. Yoon, Homology of the double and the triple loop space of the exceptional Lie group $E_{6}$, $E_{7}$, and $E_{8}$, Manuscripta Math. 103 (2000), 101-116. crossref(new window)

6.
F. R. Cohen, T. Lada, and J. P. May, The homology of iterated loop spaces, Lect. Notes. Math. Vol. 533, Springer, 1976.

7.
B. Harris, On the homotopy groups of the classical groups, Ann. of Math. 74 (1961), 407-413 crossref(new window)

8.
M. Mimura, Homotopy theory of Lie groups, Handbook of algebraic topology edited by I. M. James, North-Holland (1995), 953-991.

9.
R. E. Mosher and M. C. Tangora, Cohomology operations and applications in homotopy theory, Harper & Row, Publishers New York, Evanston, and London, 1968

10.
D. C. Ravenel, The homology and Morava K-theories of ${\Omega}^2$ SU(n), Forum Math. 5 (1993), 1-21 crossref(new window)

11.
D. Waggoner, Loop spaces and the classical unitary groups, Ph. D. Thesis, University of Kentucky, 1985