JOURNAL BROWSE
Search
Advanced SearchSearch Tips
RANDOM FIXED POINT THEOREMS FOR *-NONEXPANSIVE OPERATORS IN FRECHET SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
RANDOM FIXED POINT THEOREMS FOR *-NONEXPANSIVE OPERATORS IN FRECHET SPACES
Abdul, Rahim-Khan; Nawab, Hussain;
  PDF(new window)
 Abstract
Some random fixed point theorems for nonexpansive and *-nonexpansive random operators defined on convex and star-shaped sets in a Frechet space are proved. Our work extends recent results of Beg and Shahzad and Tan and Yaun to noncontinuous multivalued random operators, sets analogue to an earlier result of Itoh and provides a random version of a deterministic fixed point theorem due to Singh and Chen.
 Keywords
random fixed point;nonexpansive random operator;*-nonexpansive random operator;Chebyshev set;demiclosed map;Frechet space;
 Language
English
 Cited by
1.
Random Coincidence Point Theorem in Fréchet Spaces with Applications, Stochastic Analysis and Applications, 2004, 22, 1, 155  crossref(new windwow)
 References
1.
G. C. Ahuja, T. D. Narang, and S. Trehan, Best approximation on convex sets in metric linear spaces, Math. Nachr. 78 (1977), 125-130 crossref(new window)

2.
I. Beg, Random fixed points of nonself maps and random approximations, J. Appl. Math. Stoch. Anal. 10 (1997), no. 2, 127-130 crossref(new window)

3.
I. Beg and N. Shahzad, A general fixed point theorem for a class of continuous random operators, New Zealand J. Math. 26 (1997), 21-24

4.
I. Beg and N. Shahzad, Random fixed point of weakly inward operators in conical shells, J. Appl. Math. Stoch. Anal. 8 (1995), no. 3, 261-264 crossref(new window)

5.
F. E. Browder, Semicontractive and semiaccretive nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc. 74 (1968), 660-665 crossref(new window)

6.
C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53-72

7.
T. Husain and A. Latif, Fixed points of multivalued nonexpansive maps, Math. Japon. 33 (1988), no. 3, 385-391

8.
S. Itoh, Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl. 67 (1979), no. 2, 261-273 crossref(new window)

9.
K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 397-403

10.
T. C. Lin, Random approximations and random fixed point theorems for continuous 1-set contractive random maps, Proc. Amer. Math. Soc. 123 (1995), no. 4, 1167-1176 crossref(new window)

11.
S. Massa, Some remarks on Opial's spaces, Bolletino, U.M.I. (6) 2-A (1983), 65-69

12.
W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973

13.
V. M. Sehgel and S. P. Singh, A generalization to multifunctions of Fan's best approximation theorem, Proc. Amer. Math. Soc. 102 (1988), no. 3, 534-537 crossref(new window)

14.
V. M. Sehgel and S. P. Singh, On random approximation and a random fixed point theorem for setvalued mappings, Proc. Amer. Math. Soc. 95 (1985), 91-94 crossref(new window)

15.
N. Shahzad, Random fixed point theorems for various classes of l-set contractive maps in Banach spaces, J. Math. Anal. Appl, 203 (1996), 712-718 crossref(new window)

16.
K. L. Singh and Y. Chen, Fixed points for nonexpansive multivalued mapping inlocally convex spaces, Math. Japon. 36 (1991), no. 3, 423-425

17.
K. K. Tan and X. Z. Yaun, Random fixed point theorems and approximation, Stoch. Anal. Appl. 15 (1997), 103-123 crossref(new window)

18.
K. K. Tan and X. Z. Yaun, Random fixed point theorems and approximation in cones, J. Math. Anal. Appl. 185 (1994), 378-390 crossref(new window)

19.
A. B. Thaheem, Existence of best approximations, Port. Math. 42 (1983-84), 435-440

20.
G. E. F. Thomas, Integration on functions with values in locally convex Suslin spaces, Trans. Amer. Math. Soc. 212 (1975), 61-81 crossref(new window)

21.
H. K. Xu, On weakly nonexpansive and *-nonexpansive multivalued mappings, Math. Japon. 36 (1991), no. 3, 441-445

22.
H. K. Xu, Some random fixed point theorems for condensing and nonexpansive operators, Proc. Amer. Math. Soc. 110 (1990), no. 2, 395-400 crossref(new window)

23.
H. W. Yi and Y. C. Zhao, Fixed point theorems for weakly inward multivalued mappings and their randomizations, J. Math. Anal. Appl. 183 (1994), no. 3, 613-619 crossref(new window)

24.
S. Zhang, Star-shaped sets and fixed points of multivalued mappings, Math. Japon. 36 (1991), no. 2, 327-334