JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON ENTIRE RATIONAL MAPS OF REAL SURFACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON ENTIRE RATIONAL MAPS OF REAL SURFACES
Ozan, Yildiray;
  PDF(new window)
 Abstract
In this paper, we define for a component of a nonsingular compact real algebraic surface X the complex genus of , denoted by gc(), and use this to prove the nonexistence of nonzero degree entire rational maps f : Y provided that gc(Y) > gc(), analogously to the topological category. We construct connected real surfaces of arbitrary topological genus with zero complex genus.
 Keywords
real algebraic surfaces;algebraic homology;entire rational maps;
 Language
English
 Cited by
1.
Socio-Contextual Influences on the Korean News Media's Interpretation of Samsung's $847.6 Million Donation, Journal of Public Relations Research, 2011, 23, 2, 141  crossref(new windwow)
 References
1.
S. Akbulut and H. King, Topology of real algebraic sets, M. S. R. I. book series, Springer, New York, 1992

2.
R. Benedetti and A. Tognoli, On real algebraic vector bundles, Bull. Sci. Math. 2 (1980), 89-112

3.
E. Bierstone and P. Milman, Canonical desingularization in characteristic zero by blowing up the maximal strata of a local invariant, Invent. Math. 128 (1997), 207-302 crossref(new window)

4.
J. Bochnak, M. Buchner, and W. Kucharz, Vector bundles over real algebraic varieties, K-Theory 3 (1989), 271-289 crossref(new window)

5.
J. Bochnak, M. Coste, and M. F. Roy, Real Algebraic Geometry, Ergebnisse der Math. vol. 36, Springer, Berlin, 1998

6.
J. Bochnak and W. Kucharz, A characterization of dividing real algebraic curves, Topology 35 (1996), 451-455 crossref(new window)

7.
J. Bochnak and W. Kucharz, Elliptic curves and real algebraic morphisims into the 2-sphere, Bull. Amer. Math. Soc. 25 (1991) no.1, 81-87 crossref(new window)

8.
J. Bochnak and W. Kucharz, On real algebraic morphisms into even-dimensional spheres, Ann. of Math. 128 (1988), 415-433 crossref(new window)

9.
J. Bochnak and W. Kucharz, On dividing real algebraic varieities, Math. Proc. Camb. Phil. Soc. 123 (1998), 263-271 crossref(new window)

10.
J. Bochnak, W. Kucharz, and R. Silhol, Morphisms, line bundles and moduli spaces in real algebraic geoemetry, Publ. Math. IHES 86 (1997), 5-65. crossref(new window)

11.
G. E. Bredon, Topology and Geometry, Graduate Texts in Mathematics, Springer, New York, 1993

12.
K. S. Brown, The Cohomology of Groups, Graduate Texts in Mathematics, Springer, New York, 1982

13.
J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), 1-68 crossref(new window)

14.
P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiles & Sons, Inc., New York, 1994

15.
H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math. 79 (1964), 109-326. crossref(new window)

16.
J. Huisman, The underlying real algebraic structure of complex elliptic curves, Math. Ann. 294 (1992), 19-35 crossref(new window)

17.
J. L. Loday, Applications alqébriques du tore dans la spèhre et de $S^p{\times}S^p$ dans $S^{p+q}$, Algebraic K-Theory II, Lecture Notes in Math., Springer, Berlin 342 (1973), 79-91.

18.
Y. Ozan, On entire rational maps in real algebraic geometry, Michigan Math. J. 42 (1995), 141-145 crossref(new window)

19.
Y. Ozan, On homology of real algebraic varieties, Proc. Amer. Math. Soc. (to appear)