JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON A TIME-CONSISTENT SOLUTION OF A COOPERATIVE DIFFERENTIAL TIME-OPTIMAL PURSUIT GAME
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON A TIME-CONSISTENT SOLUTION OF A COOPERATIVE DIFFERENTIAL TIME-OPTIMAL PURSUIT GAME
Kwon, O-Hun; Svetlana, Tarashinina;
  PDF(new window)
 Abstract
In this paper we Study a time-optimal model of pursuit in which the players move on a plane with bounded velocities. This game is supposed to be a nonzero-sum group pursuit game. The main point of the work is to construct and compare cooperative and non-cooperative solutions in the game and make a conclusion about cooperation possibility in differential pursuit games. We consider all possible cooperations of the players in the game. For that purpose for every game we construct the corresponding game in characteristic function form . We show that in this game there exists the nonempty core for any initial positions of the players. The core can take four various forms depending on initial positions of the players. We study how the core changes when the game is proceeding. For the original agreement (an imputation from the original core) to remain in force at each current instant t it is necessary for the core to be time-consistent. Nonemptiness of the core in any current subgame constructing along a cooperative trajectory and its time-consistency are shown. Finally, we discuss advantages and disadvantages of choosing this or that imputation from the core.
 Keywords
differential game;time-optimal solution;cooperative trajectory;Nash equilibrium;core;time-consistency;
 Language
English
 Cited by
 References
1.
Differential Games: a mathematical theory with applications to warfare and pursuit, control and optimization, 1965.

2.
SIAM J. Appl. Math., 1970. vol.18. pp.567-579 crossref(new window)

3.
Problemy Kibernet, 1963. vol.10. pp.119-139

4.
Naukova Dumka, 1992.

5.
Ph. D. Thesis, 1953.

6.
Differential Games of Pursuit, 1993.

7.
Game Theory, 1996.

8.
Econometrica, 1967. vol.35. pp.500-569 crossref(new window)

9.
Naval Reseach Logistic Quanterly, 1967. vol.14. pp.453-460 crossref(new window)

10.
Game theory and applications Ⅲ, 1997.