JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CYCLOTOMIC UNITS AND DIVISIBILITY OF THE CLASS NUMBER OF FUNCTION FIELDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CYCLOTOMIC UNITS AND DIVISIBILITY OF THE CLASS NUMBER OF FUNCTION FIELDS
Ahn, Jae-Hyun; Jung, Hwan-Yup;
  PDF(new window)
 Abstract
Let (T) be a rational function field. Let be a prime number with (, q-1) = 1. Let K/ be an elmentary abelian -extension which is contained in some cyclotomic function field. In this paper, we study the -divisibility of ideal class number of K by using cyclotomic units.s.s.
 Keywords
function field;class number;cyclotomic unit;
 Language
English
 Cited by
1.
KUCERA GROUP OF CIRCULAR UNITS IN FUNCTION FIELDS,;;

대한수학회보, 2007. vol.44. 2, pp.233-239 crossref(new window)
 References
1.
Tokyo J. Math, 2001. vol.24. 1, pp.93-106 crossref(new window)

2.
Cyclotomic units and Stickelberger idenals of global function fields(preprint), 0000. crossref(new window)

3.
Bull. Amer. Math. Soc.(N.S.), 1983. vol.8. 1, pp.55-58 crossref(new window)

4.
Illionis J. Math., 1988. vol.32. 3, pp.453-461

5.
Acta Arith, 2001. vol.96. 3, pp.247-259 crossref(new window)

6.
J. Number Theory, 1981. vol.13. 3, pp.363-375 crossref(new window)

7.
Trans. Amer. Math. Soc., 1994. vol.341. 1, pp.405-421 crossref(new window)

8.
Trans. Amer. Math. Soc., 1974. vol.189. pp.77-91 crossref(new window)

9.
J. Number Theory, 1996. vol.56. 1, pp.139-166 crossref(new window)